

BSDS-202

 Introduction to Python

BSDS0202 Introduction to Python

Programming

2

GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the
responsibilities (not limited to) for the students in OBE system are as follows:

● Students should be well aware of each UO before the start of a unit in each and
every course.

● Students should be well aware of each CO before the start of the course.

● Students should be well aware of each PO before the start of the programme.

● Students should think critically and reasonably with proper reflection and action.

● Learning of the students should be connected and integrated with practical and real
life consequences.

● Students should be well aware of their competency at every level of OBE.

CONTENTS

Unit 1: Introduction, Variables, and Data Types 1�19

1.1 History 3
1.2 Features 3
1.3 Installation and Execution 3
1.4 Hello World! 5
1.5 Input and Output 5
1.6 Basic Data Types and Operators 9
1.7 Strings 12
1.8 Compound Data Types 15

Unit 2: Control Structures 20�48

2.1 Conditionals 22
2.2 Loops 31

Unit 3: Functions, Modules, and Packages 49�79

3.1 Functions 51
3.2 Modules 64
3.3 Packages 71

Unit 4: Files and Regular Expressions 80�118

4.1 File Input/Output 81
4.2 Text Processing 96
4.3 Pattern Matching and Regular Expressions 104
4.4 Application: Querying Publication Data 110

Unit 5: Django Framework 119�138

5.1 Installing and Running Django 120
5.2 Creating and Running a Web Application 122
5.3 Parameter Passing with GET 130
References for Further Learning 139

Index 141-143

d

UNIT SPECIFICS

Through this unit we discuss the following aspects:

● History of the Python Programming Language

● Overall set of features supported by Python

● Basic setup and installation

● Basic data types, operators, input and output

RATIONALE

This introductory unit gets readers acquainted with the basics of Python programming. It starts

with a brief history of Python�s creation. The unit then lists the language�s overall set of features

at a high level and motivates why it has become so popular. The unit then delves into basic language

syntax, variables, and solves a few known problems in Python. We then introduce various data

types such as numbers and strings and solve problems using those. We end this unit by introducing

aggregate data types such as lists, tuples, and dictionaries. Care has been taken to introduce the

readers to interesting problems despite the limitation of not having a conditional statement or a

loop.

PRE-REQUISITES

None

1

1

Introduction, Variables,
and Data Types

2

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U1-O1: Realize the history of Python

U1-O2: Implement simple program and execute it

U1-O3: Use different data types

U1-O4: Perform basic input and output

Unit-1

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6

U1‐O1 3 3 3 - 3 1

U1‐O2 1 1 2 2 1 -

U1‐O3 2 1 3 1 2 1

U1‐O4 - - 3 1 2 2

3

1.1 History
Python is a widely used programming language today. Starting from the
first semester students to final year projects to industry personnel, Python
finds its use in developing programs for graphics applications, text
processing, data analysis, among others.

Python was developed by Guido van Rossam, a Dutch programmer, and
released in 1991. The name is inspired from a BBC comedy show Monty

Python�s Flying Circus. Python is a successor of the ABC programming
language. At the time of this writing, Python 3 is the latest major release
of Python (on your computers, you may notice the program python3).

Since the last 20 years, Python has been in the Top 10 most popular
programming languages. At the time of this writing (July 2022), Python
is the most popular language, surpassing C and Java (according to the
TIOBE index).

Fig. 1.1: �Two

snakes� logo of Python

1.2 Features
Python is a general-purpose programming language and supports multiple paradigms or ways of
programming. For instance, we can write procedural (sequence of steps) as well as object-oriented
programs (entities as objects and communication using messages across them) in it. It can also be used
to write functional programs (applying and composing functions), among others. Unlike C and C++,
Python is interpreted. This means Python programs are not compiled and stored into a binary code file
(e.g., an executable)., but its source is translated into machine code and executed by the interpreter
directly (without us seeing the executable code). Thus, on your computers, python3 is an interpreter
(and gcc is a compiler for C programs).

Python is also dynamically-typed. This means that the type of a variable may not be specified in the
source code, and is identified when the program executes. Python also relies on garbage collection
which reclaims the allocated memory of the variables which are no longer needed (referenced, to be
precise). This relieves the programmer of the task of memory deallocation, similar to Java. Python also
has a large variety of standard libraries, which allow us to write complex codes quickly, improving our
productivity.

1.3 Installation and Execution
If you have access to the internet, you can write and execute Python programs online (e.g., Replit,
CodeAcademy, Codevny). If you wish to install it on your laptop or iPad, you can download the
appropriate installable for Windows or Linux or iPadOS or other operating systems from Python�s
official website www.python.org.

4

For instance, the following screenshot shows a Linux installation and running of Python.

Once installed, you can invoke the Python interpreter (using graphical user interface or via a command
line) to execute a Python program. Python programs can be written in your favorite editor (e.g., VS
Code or Sublime or gedit or even notepad) apart from the Python IDE, called IDLE on Windows.

On the command line, you can use certain basic commands to navigate through the file system. For
instance, if your home directory is /home/user, you can create a directory for Python programs as:

$ cd # go to home directory

$ mkdir python # create directory

$ cd python # go into that directory

$ cat >hello.py # create a new file hello.py

print(�Hello World!�)

$ python3 hello.py # run the Python interpreter

$ cd .. # come back to home directory

5

Python programs are stored in files typically with extension .py (e.g., hello.py). On a command-line, we
can execute the program as below.

$ python3 hello.py

In the above command-line, $ indicates the command-prompt, python3 is the interpreter, and hello.py
is a text-file containing your program. On your computer, the interpreter name may differ depending
upon your installation. For instance, on Windows, the interpreter binary is named python. Further, with
new versions of Python, the binary name may change to python4.

1.4 Hello World!
A typical first program in a programming language prints Hello World! to the screen. Below is our first
program in Python.

print(�Hello World!�)

The program uses a function print() to output a message to the screen. The message is given as an
argument to print() and is specified in double-quotes (�). It can also be specified in single-quotes (�) or
triple-quotes (��� or ���). When executed using the interpreter, it outputs the message.

$ python3 hello.py
Hello World!
$

The last $ indicates that the command-prompt is displayed again for the next command.

1.5 Input and Output
The function print() is used for output, while the function input() is used for taking input from the user.
Consider the following functionality where we wish to take the user�s name as input and greet the user.

$ python3 greet.py
What is your name?
Guido van Rossam

Hello Guido van Rossam
$

One problem here is that we would like to greet exactly the name that was entered. This demands us to
store the name during input and retrieve it during the output. Such an entity is called a variable. A

6

variable is capable of storing a value which can be retrieved later. In fact, a variable can hold different
values at different times. Our program achieving the above functionality looks like this.

1. print("What is your name?")
2. name = input()
3. print("Hello", name)

Note that the program is shown with line numbers, which are not part of the program. Line 1 prints our
message asking for the user�s name. Line 2 takes the input name and stores it in a variable called name.
In Line 3, we use the same variable to greet the user.

You must have noticed that Lines 1 and 3 both use the print() function but take a different number of
arguments (this is called polymorphism). In fact, the print() function can be invoked with an arbitrary
number of arguments.

Another noteworthy point is that the printing on Line 3 automatically separates the two strings �Hello�
and �Guido van Rossam� by a space (see the output above). This is the default behavior of print(). As
another example, consider the following program.

print(�Hello�, �World!�)
print(�Bye�, �World!�)

What will be the output of the above program?

Hello World!
Bye World!

We specified neither the space nor the newline in our program. It is the default behavior of print(). This
behavior can be changed with additional arguments to print().

1. print("Hello", "World!", end='####')
2. print("Bye", "World!", sep='$$')
3. print("With sep", "and end", sep=' ', end='.\n')

The output of the above program is

Hello World!####Bye$$World!
With sep and end.

Line 1 of the source code above prints the two strings separated by the default separator space � � but
ends with �####�. Line 2 then prints the two strings separated by �$$� and ends with the default end-of-
line character �\n�. Line 3 prints the two strings separated by space, which is explicitly specified, and
ends with a full-stop followed by a newline. Thus, individual strings are separated by sep and the line

7

is ended by end, whose default values are � � and �\n� respectively. �\n� is the newline character. Also
note that strings are specified in this program with single as well as double quotes.

Examples

Program Output

print('1', '+', '2', '=', '3') 1 + 2 = 3

print(1+2, 3/2) 3 1.5

print("a", "b", "c", "d", sep=",") a,b,c,d

print("a" "b" "c" "d", sep=",") abcd

id = "rupesh"
domain = "cse.iitm.ac.in"
print(id, domain, sep='@')

rupesh@cse.iitm.ac.in

id = �rupesh�
print(id, end='@')
print("cse", "iitm", "ac", "in", sep='.')

rupesh@cse.iitm.ac.in

Consider a program wherein we wish to ask for a name and year of birth from a user, and then display
the age of that user. We can write the initial part of such a program as follows.

print('Enter your name: ')
name = input()
print('Enter your year of birth: ')
yob = input()

When executed, the program works as follows.

Enter your name:
Guido van Rossam

Enter your year of birth:
1956

It will be nice if the input can be provided on the same line. This can be achieved as follows.

8

print('Enter your name: ', end=��)
name = input()
print('Enter your year of birth: ', end=��)
yob = input()

Another way to achieve it is by specifying the string as an argument to input().

name = input('Enter your name: ')
yob = input('Enter your year of birth: ')

When executed, the program works as expected.

Enter your name: Guido van Rossam
Enter your year of birth: 1956

Now let�s get back to the task of calculating the age of the user. Thus, the program should be able to
print the following (in the year 2023).

Enter your name: Guido van Rossam
Enter your year of birth: 1956
Hey Guido van Rossam you are 67 years old!

This can be achieved as follows.

name = input('Enter your name: ')
yob = input('Enter your year of birth: ')
print('Hey', name, "you are", (2023 - yob), "years old!")

Unfortunately, this simple program does not work. Why?

The Python interpreter considers variable yob to be of type string. Therefore, it cannot be directly used
in arithmetic expressions (such as 2023 - yob). This means that the string �1956� is treated differently
from the integer value 1956. To be used in an arithmetic expression, we need to convert the string
�1956� into integer 1956. This can be done using the int() function.

name = input('Enter your name: ')
yob = input('Enter your year of birth: ')
print('Hey', name, "you are", (2023 - int(yob)), "years old!")

9

 Future connect :Instead of hardcoding 2023 or the current year in the program, it would be nice if our
program can find out the current year. This can be done using the datetime module, which we will study
a little later.

Similar to string and int, there are other data types supported by Python. Let�s take a look.

1.6 Basic Data Types and Operators
Python supports numeric types such as integer, floating point, as well as complex numbers. It also
supports boolean values and strings. Further, the value of a variable can be converted from one type to
another (as we saw in the last example).

Example: A card is drawn at random from a deck of well-shuffled cards. Find the probability of it being
neither a king nor a spade.

We know that the deck has a total of 52 cards, split into 4 suites, each containing 13 cards. We can then
compute the desired probability as follows.

ncards = int(52)
nkings = int(4)
nspades = int(13)
nspadeking = int(1)
nnonspadenonking = ncards - (nkings + nspades - nspadeking)
probnonspadenonking = nnonspadenonking / ncards
print('Probability of nonking, nonspade is', probnonspadenonking)

The output of this computation is:

Probability of nonking, nonspade is 0.6923076923076923

We can restrict the output to a few decimal digits using format specification (similar to C).

print('Probability is %f' %probnonspadenonking,
 �%.2f' %probnonspadenonking)

The output of these two lines alone (Lines 8 and 9) is:

Probability is 0.692308 0.69

10

Let�s understand this formatted printing. Format specifier �%f� instructs printing of the next argument
%probnonsadenonking to be a single-precision value which by default restricts the output to six decimal
digits (unlike the original double-precision value). Format specifier �%.2f� restricts it further to 2
decimal digits. Note that there is no comma between the format specifier and %variable.

Another non-technical point this program reveals is about the variable names. As you may notice, the
variables are difficult to read. One can use camelCase to improve it.

nCards = int(52)
nKings = int(4)
nSpades = int(13)
nSpadeKing = int(1)
nNonSpadeNonKing = nCards - (nKings + nSpades - nSpadeKing)
probNonSpadeNonKing = nNonSpadeNonKing / nCards
print('Probability of nonKing, nonSpade is', probNonSpadeNonKing)

 Good Programming Practice : Use variable names that are easier to read and understand.

Example: Find the sum of the first n natural numbers.

We know the formula to compute the sum of the first n numbers: n * (n + 1) / 2. Let us use this to write
our program.

nstr = input()
n = int(nstr)
sum = n * (n + 1) / 2

print(sum)

We now understand that input() will return a string, which we need to convert to an integer (Line 2).
After this, we apply the formula (Line 3) and print the sum. For input 10, the program should print 55.

10
55.0

From the output, it is clear that the computation is reasonable, but the sum is printed as a real number.
This happens because the division operator (/) uses a floating point division. We can convert it to an
integer in multiple ways.

n = int(input())
sum = n * (n + 1) / 2
print(int(sum)) # using explicit conversion
print(�%d� %sum) # using format specifier

11

sum = n * (n + 1) // 2 # using integer division
print(sum)

Line 1 reads the input string, converts it into a number, and stores it in variable n. Line 2 computes the
sum, which is by default a real value. We print it in Line 3 using the int() function. There is also a format
specifier �%d� to print the value as an integer. We use that in Line 4. Alternatively, Python provides an
integer division operator (//). On Line 5, we use it (now the same sum variable stores an integer value).
We print the integer on Line 6.

The program highlights multiple points. First, types can be interconvertible. Second, a variable does not
have a fixed type; it can have values of different types at different points in the program (e.g., variable
sum). Hence, we do not declare them in Python. Third, notice comments on Lines 3 and 4 in gray font.
Comments start with # and last till the end of that line. Comments are for improving the readability of
the program and are not executed. Multiline comments in Python are often written using triple quotes.

 Good Programming Practice : Use comments judiciously to improve the code readability.

Examples

Program Output

print(5 + 3 / 4 - 2) 3.75

print(3.1 * 3.2 ** 3.3)
** is an exponentiation operator
similar to Fortran

143.99805374858647

print(�Last digit of 1234 is�, 1234 % 10)
% is a modulus operator
which gives the remainder

Last digit of 1234 is 4

Python has inbuilt support for complex numbers. The following example conveys its syntax.

Program Output

1. x = 1 + 2j # create
2. y = complex(1, -2) # create
3.
4. z = x - y # arithmetic
5. print(z)
6.

4j

12

7. z = x * y # arithmetic
8. print(z)
9. print(z.real, '+', z.imag, 'j')

(5+0j)
5.0 + 0.0 j

Lines 1 and 2 present two ways to create complex numbers (we can also read a complex
number as a user input). Lines 4 and 7 illustrate simple arithmetic involving complex numbers.
Finally, Line 9 shows how to separate its real and imaginary parts.

1.7 Strings
String is a fundamental data type in Python and the language provides many ways of manipulating
strings. Strings are enclosed in single-, double-, or triple-quotes. Triple-quoted strings can span multiple
lines. Certain characters such as �\n� have special meaning and are not treated as two characters, but
one. These are called escape characters or escape sequences. Strings can be concatenated readily by
using the + operator. Note that concatenation does not add a space between the two strings.

Examples

Program Output

oneline = 'one line'
twoline = '''two
 lines''' # triple-quotes
print(oneline, twoline)

one line two
 lines

errorline = "error
 line" # double-quotes

Syntax error

print("My drive is c:\nasre") # note \n
print("My drive is c:\\nasre") # escaped slash
print(r"My drive is c:\nasre") # raw string

My drive is c:
asre
My drive is c:\nasre
My drive is c:\nasre

print("Tab\tseparated\ttext\non the second line") Tab separated text
on the second line

print('I don\'t understand quotes.')
print("I don't" 'understand' '''quotes.''')
quoted strings can be concatenated.

I don't understand quotes.
I don'tunderstandquotes.

oneline = 'one line'
print(oneline, oneline) # space-separated
print(oneline + oneline) # concatenated

one line one line
one lineone line

13

print("My answer is", 3 * "No! ")
n = int(input())
print(n * �Python �)

My answer is No! No! No!
5
Python Python Python Python Python

As the final example shows, strings can also be repeated easily with a multiplier.

Python provides a large set of operators and functions to manipulate strings. We illustrate this with a few
examples below.

Examples

For the following set of examples, assume this initialization:

name = "Python Programming"

ID Program Output

1 print(name[0], name[7], len(name)) P P 18

2 name[0] = �C� Syntax error

3 print(name[-1], name[-11], name[-len(name)]) g P P

4 first = name[1:5]

second = name[7:len(name)]
print(first, second, sep=�,�)

ytho,Programming

5 first = name[:6]

second = name[7:]

print(first, second, sep=�,�)

name = second + " " + first;
print(name)

Python,Programming

Programming Python

6 print(name[1::2]) yhnPormig

The first program with ID 1 indexes into the string name and extracts individual characters
(which are actually one-length strings). Indexes start with 0. Thus, name[0] prints the first P.
To find the length of a string, that is, the number of characters in it, len() function can be used.
The last letter is at index len(name) - 1.

The program with ID 2 tries to modify the string by writing to name[0]. Incidentally, this is
disallowed in Python (such strings are called immutable). If we want to modify a string, we

14

need to assign the complete string. This is shown in the program with ID 5 where name is
reassigned to a different string.

The program with ID 3 strangely uses negative indices! Python supports negative indexing
whose meaning is counting backwards. Thus, name[-1] indexes the last character. Since this
reverse indexing starts with -1, the first letter will be at index -len(name).

The program with ID 4 extracts substring. This can be done by specifying the index range [x:y]
where all the characters starting with index x all the way upto-but-not-including y form the
substring. Thus, name[1:5] includes name[1], name[2], name[3], and name[4] (ytho); it does
not include name[5]. We can extract the second word with name[7:len(name)], which prints
Programming. Note again that len(name) is an index one past the last letter�s index.

The program with ID 5 extracts the two words from name. Not specifying the first index of the
range defaults to 0, while not specifying the second index defaults to the length of the string.

The last program with ID 6 prints letters at odd indices. It starts from index 1 (letter y), goes up
to the end of the string, and increments the index by 2.

Example: Extract fields from a roll number.

Consider an institute with roll numbers of the following format. An example roll number is
CS23B010.

● The roll number is exactly eight letters long.
● The first two letters indicate the department (e.g., CS, ME, EE, AE).
● The next two digits indicate the admission year (e.g., 23, 22, 21, 20).
● The next letter is for degree (e.g., B for BTech, M for MTech, S for MS, P for PhD).
● The last three digits indicate the position within the class.

Our task is to extract these different fields from an input roll number. The solution program is
given below.

rollno = input() # CS23B010
branch = rollno[0:2] # CS
year = int(rollno[2:4]) # 23
degree = rollno[4] # B
position = int(rollno[5:8]) # 010

print(branch, "20%02d" %year, degree, position, sep=',')

Example: Intelligent word shuffle

Find out what the below program does. The comments should help you decipher.

original = "eleven plus two"

15

first = original[:6] # eleven
second = original[6:12] # plus
third = original[12:] # two

first2 = first[:2] # el
first3 = first[2] # e
first45 = first[3:5] # ve
first6 = first[-1] # n

third2 = third[:2] # tw
third3 = third[-1] # o

original = first2 + first3 + first45 + first6 + second + third2 + third3
modified = third2 + first2 + first45 + second + third3 + first6 + first3

print(original, "==", modified)

Python provides a variety of functions to manipulate strings (e.g., converting to upper-case,
splitting based on a delimiter, substring search, etc.).

1.8 Compound Data Types
We now introduce the compound data types such as lists, tuples, and dictionaries. All these
are aggregates of several elements (which could themselves be aggregates). We will make
use of these later in an elaborate manner.

Data type List Tuple Dictionary

Properties Ordered, allows
duplicates, mutable

Ordered, allows
duplicates, immutable

Associative, unique
keys, mutable

Create L = [0, 1, 2, �T�, 4] T = 0, 1, 2, �T�, 4, 5
or
T = (0, 1, 2, �T�, 4, 5)

D={'IN':91,'US':1,�AU�:7}
or
D = dict(IN=91, US=1,
AU=7)
or
D = dict([('IN', 91), ('US',
1), (�AU�, 7)])

Index L[0], L[-1] T[0], T[-1] D['IN'], D[�AU�]

16

Range / Slice L[1:5] T[1:5] Not supported

Length len(L) len(T) len(D)

Concatenation L + L T + T D1 | D2
(Python 3.9 onward)

Mutation L[0] = 10 Not supported D['US'] = 2

Append L.append(6) Not supported Use mutation

Remove L[2:12] = [] Not supported del(D['US'])

Unpack e1, e2, e3 = L e1, e2, e3 = T e1, e2, e3 = D.items()

Others Empty list as []
One length list as [1]

Empty tuple as ()
One length tuple as (1,)

Empty dictionary as {}
One length dictionary as
{0:�zero�}

Note that in case of a list, L[2] = [] will not remove L[2]. Instead, it will replace L[2] with an
empty list. Also note that one-length tuple is indicated with an extra comma, to distinguish it
from a value, since (1) will be treated as parenthesized value 1.

A dictionary should be viewed as a storage for key-value pairs. The mapping from keys to
values is captured in a dictionary.

 Future connect : Following programs can be implemented in a generic way using loops.

Example: Store and print all the vowels from the word Mississippi.

Here, we will use a list to store the vowels.

word = "Mississippi"
vowels = [] # empty list
vowels.append(word[1:2])
vowels.append(word[4:5])
vowels.append(word[7:8])
vowels.append(word[10:11])
print(vowels)

Example: Given a postal address, extract its fields, and print.

Here, we will make use of a string function called split() to divide a string into different parts, and make
use of a tuple containing all the parts.

17

address = '670, New Nandanvan Layout, Near Sham Dham Temple, Nagpur, Maharashtra, 440024'

(plotNo, addrLine1, addrLine2, city, state, pincode) = address.split(', ')
print('Pincode =', pincode)
print(�City = �, city)

Example: Extract the phone number of a friend from a directory.

We will implement a directory using a dictionary, with its key as the friend�s name and its value as the
friend�s phone number.

phoneof = {'Rajesh':9432492125, 'Somesh':8793932633, 'JK':3283728272}
friend = input('Enter a friend\'s name: ')
print("The friend's phone number is", phoneof[friend])

UNIT SUMMARY

We touched upon the historical aspects of Python�s genesis and delved into writing simple programs
using numbers and strings. We also introduced aggregates such as lists, tuples, and dictionaries.

EXERCISES

Multiple Choice Questions

1. What is the output of the following program?

print("p", "q", "r", sep='=')

A. p=q=r
B. p=q=r=
C. =p=q=r
D. =p=q=r=

2. Replace X in the following program such that the output is pqr#pqr.

print('pqr', X)
print('pqr')

18

A. �#�
B. ���#���
C. sep=�#�
D. end=�#�

3. What is the output of the following program if the input is 7.5?

cgpa = input("Enter your CGPA: ")
perc = 10 * cgpa
print(perc)

A. 75
B. Error
C. 7.57.57.57.57.57.57.57.57.57.5
D. 75.0

4. What is the output of the following program?

T = ("1", "1"+"1", "1"+"1"+"1", "1"+"1"+"1"+"1")
print(T[2])

A. 1 1 1
B. �3�
C. 3
D. 111

5. Replace X in the following program such that the output is 6.

M = {0:0, 1:1, 2:4, 3:9, 4:16}
M[X] = 9
M[5] = 25
print(len(M))

A. 5
B. 6
C. 7
D. 12

19

Answers of Multiple Choice Questions

1. A: p=q=r
2. D: end=�#�

3. C: 7.57.57.57.57.57.57.57.57.57.5
4. D: 111
5. A: 5

PRACTICAL

1. Write a program that reads marks of three quizzes and outputs the total out of 100.
2. Read a string from the user. Assume these to be unique letters in a set. Find out the

size of the powerset of this set. For instance, if the string is �abc�, the set is {a, b, c}
and its powerset is {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} whose size is 8. For
string �python�, the output should be 64.

3. Write a program to find the probability of a card drawn from a standard deck to be
neither a Spade nor a colored card (Jack, Queen, King).

4. Given a tuple of five coefficients e.g. (1, 2, -3, 0, 5), write the corresponding polynomial
in x. For instance, 1x^4 + 2x^3 + -3x^2 + 0x + 5.

5. Find the sum of the geometric series 1 + x + x2 + x3 + � + xn given the values of x and
n.

Dynamic QR Code for Further Reading

20

d

UNIT SPECIFICS

Through this unit we discuss the following aspects:

● Conditional processing using if, if-else, elif

● Looping constructs for, while

● Control-flow alteration using break, continue, pass, and else

RATIONALE

Assignment statements alone cannot enable us to write arbitrary programs. To write general-

purpose codes, we need to alter the straight-line execution path, as well as execute certain

statements repeatedly. This leads to conditional statements and looping constructs, which we study

in this unit. Python also supports specialized variants, which allow us to systematically specify the

desired control pattern.

PRE-REQUISITES

Unit 1

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U2-O1: Use conditional constructs

U2-O2: Use looping constructs

U2-O3: Apply various control structures to solve problems

2

Control Structures

2

21

Unit-2

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6

U2‐O1 3 3 3 - 3 1

U2‐O2 1 1 2 2 1 -

U2‐O3 2 1 3 1 2 1

22

2.1 Conditionals
Consider two millionaires: you and your friend. You want to identify who is richer. What
do you do? While there are multiple ways to find this out, a direct way is to ask your
friend the amount of property owned. You compare it with your property and find out the
answer.

If we have to write this as steps of an algorithm (called pseudocode), we can do so
using Python comments:

1. # ask your friend for the amount of property owned
2. # friend�s property = read / listen from the friend
3. # my property = �.
4. # if my property > friend�s property then
5. # I am richer
6. # otherwise
7. # Nevermind, I am not richer than my friend

Note how the outcome can differ depending upon the situation. Thus, the conditional
check on Line 4 decides whether Line 5 is reached or Line 7. Also note that only one of
the two is possible.

The above pseudocode is essentially computing the larger of two numbers, which could
be two property evaluations, two digits, two ages, two times, or even two speeds.
Irrespective of what we compare, the program pattern remains the same. Python allows
us to write such a code using an if construct.

1. friendProperty = int(input(�What is your property in millions? �))
2. myProperty = 10 # million
3. if myProperty > friendProperty:
4. print(�I am richer.�)
5. else:

6. print(�Nevermind, I am not richer than you.�)

Lines 3�6 present the syntax of an if-else statement. It evaluates the condition
myProperty > friendProperty. Depending upon the value entered, this condition may
evaluate to True or False. If the condition is True, Line 4 gets executed. If the condition
is False, then Line 6 gets executed. Thus, the following two executions of the above
program reveal the conditional execution of statements.

What is your property in millions? 2 What is your property in millions? 15

23

I am richer. Nevermind, I am not richer than you.

Thus, the program when executed with input 2, evaluates the condition 10 > 2 to True,
and hence, executes Line 4. In contract, with input 15, the program evaluates the
condition 10 > 15 to False, and hence, executes Line 6.

Syntactically, the following points should be noted.

1. The condition of the if statement ends with a colon(:).
2. The else clause must end with another colon.
3. The else clause is optional. Thus, Lines 5 and 6 need not be present in the program and it is

still a syntactically valid program.
4. There could be one or more lines in the if block and the else block. For instance, Line 4 forms

the if-block, while Line 6 forms the else-block in the above program.
5. The if and the else blocks should be indented compared to the indentation of if-else.

Example: Matching blood group.
Let us say that the user enters two blood groups and we want to write a program to find
out if the two blood groups match. While in reality, there are more matchings possible
(e.g., A+ can donate blood to AB+), in our program, we will say that a blood group
matches with only itself. Sample executions of such a program are as below.

Enter the two blood groups: A+ A+
The two blood groups match.

Enter the two blood groups: A+ B-
It is a mismatch.

1. bg1, bg2 = input("Enter the two blood groups:").split()
2. if bg1 == bg2:
3. print("The two blood groups match.")
4. else:
5. print("It is a mismatch.")

We use the split() function to read two blood groups separated by spaces, and assign
those to two variables in the same assignment statement (Line 1). We then check if the
two blood groups entered are the same. This is done using the == operator, for checking
equality. If the two blood groups are the same, the condition evaluates to True, leading to
execution of Line 3. Otherwise, Line 5 gets executed.

24

The following table shows various comparison operators available in Python.

Op Meaning Usage

< Less than if a < b: print(�a is smaller�)

> Greater than if a > b: print(�a is larger�)

<= Less than or equal to if a <= b: print(�a is less than or equal to b�)

>= Greater than or equal to if a >= b: print(�a is greater than or equal to b�)

== Equal to if a == b: print(�a and b are equal�)

The above table also illustrates that the else clause is optional.

Example: Find the student from your department.

Say you are in the Computer Science (CS) Department with roll number as CS23B001.
Using the roll number of a student, you should be able to find out if the student is from CS
or not. It should work as follows.

Your roll number: CS23B010
Hi Bro!

Your roll number: ME23B111
Excuse me?

Your roll number: CH23B002
Excuse me?

Your roll number: BS23B002
Excuse me?

Let�s write a program for it. The input is a string holding the roll number. We need to extract the first
two characters (how?) and check if those are �C� and �S�. This can be done using nested if-else
statements.

1. rollNum = input("Your roll number: ")
2. if rollNum[0] == 'C':
3. if rollNum[1] == 'S':
4. print("Hi Bro!")
5. else:
6. print("Excuse me?")

Note the extra indentation for Line 4, due to the nesting. If the first character is �C�, it checks the second
character on Line 3, and if it is �S�, then it executes Line 4. Otherwise, it executes Line 6. Out of the

25

four inputs given above, try running this program with those inputs. For which inputs the program gives
the expected output?

You would notice that this program gives the correct output for CS23B010, ME23B111, BS23B002,
but does not produce any output for CH23B002. Why? Well, because we did not ask it to. The else
clause on Line 5 corresponds to the if clause on Line 2. As far as the if clause of Line 3 is concerned, it
does not have an associated else clause. Hence, when the condition on Line 3 is False (CH�.), the
control comes out of the nested-if statement without any output. How do we fix it?

1. rollNum = input("Your roll number: ")
2. if rollNum[0] == 'C':
3. if rollNum[1] == 'S':
4. print("Hi Bro!")
5. else:
6. print("Excuse me?")

The code is still wrong. For what input does it produce no output?

Out of the four inputs, the program produces correct output for CS23B010 and CH23B002. But it does
not produce any output for ME� and BS� roll numbers. This is because, due to indentation, the else
clause now corresponds to the if clause on Line 3. Line 2 does not have any corresponding else. So let�s
add it.

1. rollNum = input("Your roll number: ")
2. if rollNum[0] == 'C':
3. if rollNum[1] == 'S':
4. print("Hi Bro!")
5. else:
6. print("Excuse me?")
7. else:
8. print("Excuse me?")

Now the program works across all the inputs. But note that there is a duplicate processing on Lines 6
and 8. Can we avoid this duplication?

Conjuncts
The duplication can be avoided if we can combine the if conditions on Lines 2 and 3. Python allows us
to do that using conjuncts such as and and or.

1. rollNum = input("Your roll number: ")

26

2. if rollNum[0] == 'C' and rollNum[1] == 'S':
3. print("Hi Bro!")
4. else:
5. print("Excuse me?")

The conjunct executes the if-block if both the conditions are true. Otherwise, it executes the else-block.
Line 2 can also be written succinctly as:

 2. if rollNum[0:2] == 'CS':

Example: Find the student from your department where the roll number may be in capital or small-case
letters.

To address this, we need to augment our if condition to include small-case letters too.

1. rollNum = input("Your roll number: ")
2. if (rollNum[0] == 'C' or rollNum[0] == 'c') and (rollNum[1] == 'S' or rollNum[1] == 's'):
3. print("Hi Bro!")
4. else:
5. print("Excuse me?")

Thus, the or conjunct evaluates to True if any one of the conditions evaluates to True. That is, it
evaluates to False only if all the conditions are False.

Note the use of parentheses to combine the clauses by the and conjunct. This is required because or has
a lower precedence than the and conjunct. Thus, in absence of parentheses, the meaning of Line 2 would
be:

 2. if rollNum[0] == 'C' or (rollNum[0] == 'c' and rollNum[1] == 'S') or rollNum[1] == 's':

Can you find out the inputs for which this modified program would produce wrong results?

One may write the above program by reordering the conditions.

1. rollNum = input("Your roll number: ")
2. if (rollNum[0] == 'C' and rollNum[1] == 'S') or \
3. (rollNum[0] == 'c' and rollNum[1] == 's'):
4. print("Hi Bro!")
5. else:
6. print("Excuse me?")

Are the last two programs equivalent? The answer is no. The last program allows roll numbers �CS��
and �cs��, but does not allow a mixed-case �Cs�� or �cS��, which is permitted by the earlier program.

27

Also note how the long statement on Line 2 is split using a backslash at the end of the line. Without the
backslash, the program exhibits a syntax error.

Yet another way in which the above check can be made is by using a string function upper(), which
returns its upper-case version. The following program illustrates this.

1. rollNum = input("Your roll number: ")
2. if rollNum[0:2].upper() == 'CS':
3. print("Hi Bro!")
4. else:
5. print("Excuse me?")

Is it possible to print �Excuse me?� in the if-block and �Hi Bro!� in the else-block? This demands
reversing the conditions. Python provides the not keyword to alter the truth-value of a condition. Thus,
the functionally equivalent program would be:

1. rollNum = input("Your roll number: ")
2. if not (rollNum[0:2].upper() == 'CS'):
3. print("Excuse me?") # note the exchange of print() statements
4. else:
5. print("Hi Bro!")

When the program execution finds out that rollNum[0] is not �C�, does it need to check if rollNum[1]
is �S� or not? It does not need to, since the truth value of the condition is anyway going to be False. This
way of evaluating conditions is called short-circuiting.

Short‐circuiting
In short-circuiting, only as many sub-conditions as required to find the truth value of the whole condition
are evaluated. This can lead to some sub-conditions not getting evaluated. We explain this using an
example: a == 0 and (b < 3 or c <= 5). In the below table, ✔ indicates that the corresponding sub-
condition is evaluated. An empty cell indicates that the sub-condition is short-circuited and, therefore,
not evaluated.

Values a == 0 b < 3 c <= 5 Truth value

a = 0, b = 3, c = 6 ✔ ✔ ✔ False

a = 0, b = 3, c = 5 ✔ ✔ ✔ True

a = 0, b = 2, c = 5 ✔ ✔ True

28

a = 0, b = 2, c = 6 ✔ ✔ True

a = 1, b = 3, c = 5 ✔ False

Thus, when a = 0, b = 2, c = 6, the sub-condition a == 0 is evaluated and is True. However, we cannot
deduce whether the whole condition is True or not, due to the presence of the and conjunct. Therefore,
we must evaluate (b < 3 or c <= 5). The sub-condition, b < 3 is True. At this stage, we can say that
therefore, the condition (b < 3 or c <= 5) is also True � without evaluating c <= 5. Thus, the last sub-
condition gets short-circuited and is not evaluated. The whole condition evaluates to True.

Note that a row such as the following is not possible for this example.

a = �, b = �, c = � ✔ ✔ False

One may wonder how such a phenomenon affects you, since this seems to be only an optimization and
not affecting any output. The output gets affected when sub-conditions can have side-effects. For
instance, if a, b, c are replaced with function calls, and each function has a print() statement, then the
output will depend upon whether the short-circuiting happens or not.

 Future connect : We will study functions in detail in another unit. But to illustrate short-circuiting, we
present an example using functions.

1. def a():
2. print("a")
3. return True
4. def b():
5. print("b")
6. return True
7. def c():
8. print("c")
9. return True
10.
11. if a() and (b() or c()):
12. print("Whole condition is true.")
13. else:
14. print("Whole condition is false.")

The above program defines three functions a(), b() and c(), which print a message and return True. The
main program starts from Line 11 (similar to our programs so far), and evaluates the condition. After
evaluating function a() and function b(), the condition is guaranteed to be True, hence, function c() is
not executed. Therefore, the output of the above code is:

29

a
b
Whole condition is true.

Without short-circuiting, c would also have been printed.

Does this mean short-circuiting is useful only while using functions? Not at all. Short-circuiting can be
very useful to guard against an invalid access. For instance, consider the condition below:

 if index < len(mystring) and mystring[index] == �x�:

With short-circuiting, if the index is beyond the string then the first sub-condition is False. Therefore,
the second sub-condition will not be evaluated, avoiding the out-of-bound access.

Example: Lucky cards!

To expand on our understanding, let�s implement the game of lucky cards. We know that a standard
deck of 52 cards is grouped into four suites Club, Diamond, Heart, and Spade, each containing 13 cards:
Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. Some of these cards are considered lucky. Our task
is to read a card as input and output if the card is lucky or not.

The predefined set of lucky cards is as follows:

● Ace of Spade
● Any Heart
● Queen of Diamond
● King of Diamond
● Any 7

The corresponding program will have a list of conditions separated by or. Each condition can then take
care of one category of lucky cards. A sample run of such a program can be as follows.

Enter your card: 7 of Heart
Lucky you!

Enter your card: Queen of Spade
Better luck next time.

Enter your card: 8 of Spade
Better luck next time.

Enter your card: Ace of Spade

30

Lucky you!

Let�s write the program using conditionals for lucky cards.

1. card, of, suite = input('Enter your card: ').split()
2.
3. if (suite == 'Spade' and card == 'Ace') or \
4. (suite == 'Heart') or \
5. (suite == 'Diamond' and card == 'Queen') or \
6. (suite == 'Diamond' and card == 'King') or \
7. (card == '7'):
8. print('Lucky you!')
9. else:

 print('Better luck next time.')

Line 1 uses the split() method to separate the three words, and accordingly, find the suite and the card
in it. It then runs a large if condition, separated by or, split on multiple lines connected by backslash (\).
If any one of the conditions is satisfied, it is a lucky card. Note that Line 7 should use string �7� and not
integer 7.

We would like to now enhance this program to check for invalid cards. Thus, inputs such as �seven of
Spade� or �7 of spade� or �7 Spade� or �11 of Spade� should be marked as invalid.

1. card, of, suite = input('Enter your card: ').split()
2.
3. if (suite != 'Spade' and suite != 'Heart' and \
4. suite != 'Club' and suite != 'Diamond') or \
5. (card != 'Ace' and card != '2' and card != '3' and card != '4' and \
6. card != '5' and card != '6' and card != '7' and card != '8' and \
7. card != '10' and card != 'Jack' and card != 'Queen' and card != 'King'):
8. print('Invalid card')
9.
10. elif (suite == 'Spade' and card == 'Ace') or \
11. (suite == 'Heart') or \
12. (suite == 'Diamond' and card == 'Queen') or \
13. (suite == 'Diamond' and card == 'King') or \
14. (card == '7'):
15. print('Lucky you!')
16. else:
17. print('Better luck next time.')

In the above program, Line 1 and Lines 10 � 17 remain the same as before, except replacing if on Line
10 with elif. In addition we create another long condition to check if the card is invalid. This is done

31

with subconditions to check the suite (Lines 3 and 4) and subconditions to check the card (Lines 5 � 7).
The two subconditions are joined with an or condition (end of Line 4, and note the parentheses).

The condition can be simplified using De Morgan�s laws. The laws mention:

not x and not y == not(x or y)

not x or not y == not(x and y)

Thus, Lines 3�8 can be rewritten as:

 3. if not ((suite == 'Spade' or suite == 'Heart' or \
 4. suite == 'Club' or suite == 'Diamond') and \
 5. (card == 'Ace' or card == '2' or card == '3' or card == '4' or \
 6. card == '5' or card == '6' or card == '7' or card == '8' or \
 7. card == '10' or card == 'Jack' or card == 'Queen' or card == 'King')):
 8. print('Invalid card')

Carefully note the application of the laws. The inner subconditions now contain ==, which are easier to
decipher. The conditions of the suite and the card are joined using an and while the subconditions of a
suite are joined using or. If the big condition is true, it means that it is a valid card. Therefore, to check
invalidity, a negation using not is required for the whole condition (note the parentheses).

2.2 Loops
Some programs cannot be written without the ability to repeat. For instance, consider printing
�Hello World!� 100 times. One can write 100 print() statements easily. However, if I now ask
you to write a program to take a number from the user and print �Hello World!� those many
times, you would be stuck!

Loops allow us to repeat an arbitrary piece of code, arbitrarily number of times. Python
supports two types of loops: while and for. The while loop iterates through (repeats) a
sequence of code till a given condition is True. The for loop iterates over the items of a given
sequence. We will study both in detail now.

While Loop
Let�s first write our program to print a message a certain user-defined number of times.

1. n = int(input())
2. i = 0
3. while i < n:
4. print('Hello World!')

32

Note the similarity of the loop�s structure with that of an if statement. The body of the loop (in this case,
Line 4) is repeated till the condition on Line 3 is true.

If you enter 10 as input, how many �Hello World!�s does our program print? 9 or 10?

Well, it continues to print �Hello World!� an unbounded number of times. Why? Because we asked it
to. The condition i < n continues to remain true, as the value of i never changes in the loop. To get the
expected result, we need to increment i.

1. n = int(input())
2. i = 0
3. while i < n:
4. print('Hello World!')
5. i = i + 1 # progress

 Remember : A loop must make progress towards its terminating condition.

Example: Find pass-percentage of a class.

A teacher is entering the marks of students. A student passes a course if the marks are at least 40 (out
of 100). The teacher wants to know the percentage of students passed.

To find the pass percentage, we need the number of students P passing the course, and the total number
of students N in the class. The output then is P * 100 / N. Finding P needs us to go through all the marks.
How do you find N?

There are two ways. One, we ask the teacher to enter N at the start of our program. Two, we derive it
based on a special end-of-class marker (e.g., -1 for marks). Let�s write the program both ways.

1. n = int(input(�Number of students: �))
2. i = 0
3. pass = 0
4.
5. while i < n: # predefined number of iterations
6. marks = int(input(�Enter marks: �))
7.
8. if marks >= 40:
9. pass = pass + 1
10.
11. i = i + 1
12.
13. print(pass * 100 / n, �% passed�)

33

Note how we added blank lines 4, 7, and 10, which makes the code tidy and often easier to understand.
The code can be enhanced to check for the divide-by-zero error at Line 13.

 Good Programming Practice : Add blank lines to improve readability of the code. A typical
convention is to have a blank line prior to and after a control construct (and functions), especially for
large programs.

Let�s now write it with an end-of-class marker. Assuming marks are always non-negative (no negative
marking by the teacher), we can use -1 as a special marker. As soon as that number is entered, our
program can know that marks of all the students are entered and we can now compute the percentage.

A sample execution of such a program would be as follows.

Enter marks: 5
Enter marks: 10
Enter marks: 50
Enter marks: 32
Enter marks: 23
Enter marks: 40
Enter marks: 89
Enter marks: 100
Enter marks: 99
Enter marks: 89
Enter marks: -1
60.0 % passed

The output was computed by counting the number of non-negative inputs as N. The corresponding
program is as follows.

1. n = 0
2. pass = 0
3. marks = int(input(�Enter marks: �))
4.
5. while marks >= 0: # number of iterations based on data
6. if marks >= 40:
7. pass = pass + 1
8.
9. n = n + 1
10. marks = int(input(�Enter marks: �))
11.
12. print(pass * 100 / n, �% passed�)

34

Note how the condition changed at Line 5. It is now based on the marks entered. The students are
counted at Line 9. Note also the usage of the same statement at Lines 3 and 10. You will find this to be
a recurrent pattern.

One can use tricks to avoid the repetition. For instance, by initializing n to -1, marks to 0, and removing
the input() statement outside the loop. The code will be functionally equivalent to the above code. But
it is important to make sure that the code is readable.

Example: Print Fibonacci sequence.

Fibonacci sequence is defined as follows.

Fib(0) = 0, Fib(1) = 1

Fib(n) = Fib(n - 1) + Fib(n - 2)

If we expand the Fib function, we get a sequence as 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, � Since it is unending,
we can specify how many terms you wish to print, that is, the value of n.

 Future Connect : Fibonacci sequence is a classic example of recursion.

While Fibonacci numbers have a strong presence in Mathematics, a few natural phenomena also follow
Fibonacci numbers (e.g., how branches emerge in trees or how petals of certain flowers are arranged).

Can we use loops to print this sequence? We can get started like this (as a pseudocode).

n = int(input())
first number = 0
second number = 1

while n > 0:
 print the first number
 Shall I print the second number?
 sum = first number + second number
 What happens in the second iteration?
 n = n - 1

The issues need to be resolved as follows.

● We should print only one number per iteration.
● Somehow, the first number should take the next value to be printed in the next iteration.
● The other two variables (second number and sum) should be computed but not printed in the

current iteration.

Essentially, the Fibonacci sequence should slide through the three variables.

35

first number second number sum

0 1 1

1 1 2

1 2 3

2 3 5

3 5 8

5 8 13

� � �

This sliding through can be implemented by:

● discarding the printed value of the first number,
● storing second number into the first number, and
● storing sum into the second number.

The overall program now becomes:

1. n = int(input())
2. first = 0
3. second = 1
4.
5. while n > 0:
6. print(first)
7. sum12 = first + second
8. first = second
9. second = sum12
10. n = n - 1

Note the order of statements 7, 8, and 9. Reordering of these statements would result in a wrong output.
By the way, we can use sum instead of sum12 and the code would work. But since sum() is a predefined
function in Python, we would like to avoid using the same name.

The same code can be succinctly written using the multiple-assignment form, which gets rid of the
sum12 variable.

1. n = int(input())

36

2. first, second = 0, 1
3.
4. while n > 0:
5. print(first)
6. first, second = second, first + second
7. n = n - 1

It is important to understand that for the program to work correctly, all the expressions on the right hand
side of = must be evaluated before any assignment to the left hand side variables happens. This allows
you to swap two variables easily: x, y = y, x

Example: Collatz sequence.

Mathematician Collatz made a conjecture which is still unproven. He said, start from any positive
integer. If it is even, halve it; otherwise triple it and add one. Now repeat this process. This sequence
will finally reach 1. This conjecture is also known as the 3n+1 problem. For instance, for input 7, the
sequence becomes 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

Let�s implement this sequence given an input number.

1. n = int(input())
2.
3. while n != 1:
4. if n % 2 == 1:
5. n = 3 * n + 1
6. else:
7. n = n // 2
8. print(n)
9.
10. print(�How do I always get printed?�)

For Loops
For loops work with an ordered sequence, wherein the loop variable assumes the value of each element
in the sequence from left to right in different iterations. For instance, the simple form of a for loop can
be used to print numbers from 0 to 9.

1. for i in range(10):
2. print(i)

In the above program, i is the loop variable, going over the sequence returned by range(). The function
could also be used to step through the sequence in a strided manner. For instance, consider the following
code.

37

1. for i in range(10, 20, 3):
2. print(i)

Its output is

10

13

16

19

The same code can be equivalently written using a while loop as follows.

1. i = 10
2. while i < 20:
3. print(i)
4. i = i + 3

Unlike the while loop, since the for loop iterates through a finite sequence, we do not have to often
worry about the termination condition.

Example: Print the negative numbers from a given sequence.

We can use a for loop to go over a given sequence and print the number if it is negative.

1. numbers = [65, 32, -3, 32, 43, 32, -22, 2, -5, -7, 0, -9]
2. for n in numbers:
3. if n < 0:
4. print(n)

Example: Find the continent with the longest name.

We can store the continents in a list and iterate through them using a for loop. To find the length of a
string, we can use the len() function. Finding the maximum length requires maintaining a maxlen
variable. However, to print the continent with the maximum length, we also need to store it in the
maxcont variable � whenever we update maxlen. The corresponding code is below.

1. continents = [�Africa�, �Antarctica�, �Asia�, �Australia�, �Europe�, �North America�,
�South America�]

38

2. maxlen = 0 # this initialization is important
3.
4. for cont in continents:
5. if maxlen < len(cont):
6. maxlen = len(cont)
7. maxcont = cont
8.
9. print(maxcont)

Since there are two answers to this question, think about what would our code output. If we want the
other answer to be output, what small change would you make to the code?

Example: Check if a given number is prime. The number is larger than 2.

We will use a simple algorithm which checks divisibility of a given number n with numbers from 2 to
square root of n. sqrt() is a function for finding the square root defined in a module named math. For
this, we will have to tell the Python interpreter that we want to use this module. This is done using an
import statement.

1. import math, sys
2.
3. n = int(input())
4.
5. for i in range(2, 1 + int(math.sqrt(n))): # note 1 + �
6. if n % i == 0: # if i divides n
7. print('Composite')
8. sys.exit()
9.
10. print('Prime')

The above program works for a number larger than 2. Line 1 imports math and sys modules. The former
is for sqrt function (Line 5) while the latter is for exit function (Line 8), which terminates the program.
The loop goes over all the integers from 2 to sqrt(n) and if any of them divides n (Line 6), then the
number is not prime. What happens if we comment out Line 8?

 Future Connect : We will learn about modules in a later unit. Consider a module to be a library of
useful functions related to a specific domain.

In the above program, only 2 is an even divisor which needs to be checked, but we are unnecessarily
checking against 4, 6, 8, � This can be easily avoided as follows.

1. import math, sys
2.
3. n = int(input())

39

4.
5. if n % 2 == 0:
6. print(�Composite�)
7. sys.exit()
8.
9. for i in range(3, 1 + int(math.sqrt(n)), 2):
10. if n % i == 0: # if i divides n
11. print('Composite')
12. sys.exit()
13.
14. print('Prime')

Nested Loops and Loop Modifiers
Loops can be nested, that is, one loop can be inside another. Consider that we want to find all the prime
numbers from 3 to 100. How can we modify the above program, which works for one number, to work
for many numbers?

1. import math, sys
2.
3. for n in range(3, 100+1):
4. print(n)
5. # code from the above program (Lines 5 � 14)

Unfortunately, the output of the above code consists of only two numbers.

3
Prime
4
Composite

This happens because we have sys.exit() after printing Composite. Exiting the program was okay for a
single number, but not for a sequence of numbers. Ideally, we want that after finding out that a number
is composite, we should not print Prime, but still go to the next number for primality checking.

Python provides loop modifiers to enable such a control-flow. The keyword break brings the control
out of the currently enclosing nearest loop, while the keyword continue skips the rest of the iteration
and goes to the next one. The whole program would now be as follows.

40

1. import math
2.
3. for n in range(3, 100+1):
4. print(n)
5.
6. if n % 2 == 0:
7. print(�Composite�)
8. continue # go to the next number
9.
10. for i in range(3, 1 + int(math.sqrt(n)), 2):
11. if n % i == 0: # if i divides n
12. print('Composite')
13. break # come out of the loop at Line 10
14.
15. print('Prime')

After Line 7 finds out that a number is even, Line 8 goes back to the next number in the range specified
at Line 3, skipping Lines 9 � 15. Similarly, after finding a number composite at Line 12, Line 13 brings
the control to Line 14, out of the for loop at Line 10. Note that Line 13 is enclosed in two loops (Line 3
and Line 10), but it comes out of the currently enclosing nearest loop, that is, Line 10�s loop. The
program now prints all the numbers from 3 to 100, and most of the outputs are correct, but some are
wrong. For instance, the initial few lines are:

3
Prime
4
Composite
5
Prime
6
Composite
7
Prime
8
Composite
9
Composite
Prime
10
Composite
�

Notice the output for number 9. Our code prints both Composite and Prime. Why does this happen?
This is because break at Line 13 brings the control to Line 14. After that Line 15 continues to print
Prime.

41

How do we correct this? We can keep track whether Composite was printed or not. If it was, then we
need not print Prime; otherwise we should. The modified code looks like this.

1. import math
2.
3. for n in range(3, 100+1):
4. print(n, ��, end=��)
5.
6. if n % 2 == 0:
7. print(�Composite�)
8. continue # go to the next number
9.
10. composite = False
11.
12. for i in range(3, 1 + int(math.sqrt(n)), 2):
13. if n % i == 0: # if i divides n
14. print('Composite')
15. composite = True
16. break
17.
18. if composite == False: # number is not composite
19. print('Prime')

The above code works well and produces the expected output.

 Future Connect : Such a reuse of functionality (checking primality of one number) can be nicely
encoded using functions. We can then call such a function in a loop.

Python provides a special construct to support the functionality we implemented using the variable
composite. It is the else clause of a loop (for or while).

1. import math
2.
3. for n in range(3, 100+1):
4. print(n, ��, end=��)
5.
6. if n % 2 == 0:
7. print(�Composite�)
8. continue
9.

42

10. for i in range(3, 1 + int(math.sqrt(n)), 2):
11. if n % i == 0: # if i divides n
12. print('Composite')
13. break
14. else: # else corresponding to for
15. print('Prime')

Note the indentation of the else clause at Line 14. It corresponds to the for loop at Line 10 (and not to
the if statement at Line 11). The else clause is executed if the loop exhausts all the elements in the
sequence of numbers (or when the while condition becomes False), but does not get executed if the loop
gets terminated by break. To understand this clause better, let�s look at the following simple example.

1. for i in range(1, 10):
2. print(i)
3. else:
4. print("End:", i)
5.
6. i = 1
7. while i < 10:
8. print(i)
9. i = i + 1
10. else:
11. print("End:", i)

Can you analyze the program and find out the output of the above code? It is as below.

1
2
3
4
5
6
7
8
9
End: 9
1
2
3
4
5
6
7

43

8
9
End: 10

Note how the while loop increments the variable to 10, whereas the for loop retains its value to 9 at the
end.

To understand the use of break and continue, let�s consider the following example.

Example: Given a list, print all the positive numbers, but stop as soon as 0 is reached.

For instance, if the input list is [-4, 2, 54, 21, -32, 3, 6, 3, 1, 0, -5, 321], the output should print the
values 2, 54, 21, 3, 6, 3, 1. It should not print 321. The program is as below.

1. numbers = [-4, 2, 54, 21, -32, 3, 6, 3, 1, 0, -5, 321]
2.
3. for n in numbers:
4. if n == 0: # 0 is seen, come out of the loop
5. break
6.
7. if n < 0:
8. continue # do not print negative numbers
9. print(n)

Python also supports a pass statement, which can be used when no processing is required.

For instance, consider a program where we wish to find the sum of positive integers in a list which may
contain negative numbers also.

1. numbers = [-4, 2, 54, 21, -32, 3, 6, 3, 1, 0, -5, 321]
2. sumn = 0
3.
4. for n in numbers:
5. if n < 0:
6. pass
7. else
8. sumn = sumn + n
9.
10. print(sumn)

Of course, the program can be modified to not require pass. But sometimes, it can be useful for
readability purposes.

44

Example: Find birthdays in a month.

Say, you have friends whose birthdays are written in DD/MM/YY format. You want to find who all
have birthdays in the month of August. To store birthdays, we can use key-value pairs, where name is
the key and value is the birthdate. We will use the string index range to extract the MM part of the date.

1. birthdays = {'Amit':'01/07/00', 'Karan':'02/08/99', 'Joel':'28/07/01',
2. 'Sunita':'15/06/99', 'Shyam':'10/08/00', 'Sudhira':'29/02/00'}
3.
4. for name, bday in birthdays.items():
5. if bday[3:5] == '08': # August
6. print(name)

The program stores names and birthdays in a dictionary (Lines 1 and 2). It then iterates through the key-
value pairs using items() function (Line 4). It checks if the month is eighth, and if so, prints the name of
the friend.

Example: Do you have the exact change?

You are given an infinite supply of notes of three denominations (say, 10 rupee, 20 rupee, and 50 rupee
notes). Given a price, can you identify if you have exact change summing up to that price? For instance,
using these three types of notes, we can pay 10, 20, 30, 40, 50, 60, 70 rupees, etc., but we cannot pay
55. It is also possible that the same price can be constructed using multiple combinations of notes. For
instance, 50 rupees can be constructed using three notes of 10 and one note of 20, or by directly using
a single 50 rupee note. We can print all the possible combinations. Consider the following sample inputs
and outputs.

Input Output

55
10 20 50

No

18
7 11 13

1 1 0

550
10 20 100

1 2 5
1 7 4
1 12 3
�

A simple way to achieve this is by having a triply-nested loop going over various numbers of
notes, and then checking every combination of notes. But since you have an infinite number
of notes (as far as this example is concerned), when should individual loops terminate? The
input price can help set the upper bound. The complete program is as below.

45

1. price = int(input('Price: '))
2. deno1, deno2, deno3 = map(int, input('Denominations: ').split())
3.
4. print("Can you form", price, "exactly using", deno1, deno2, deno3, "?")
5.
6. for d1 in range(0, 1 + price // deno1):
7. for d2 in range(0, 1 + price // deno2):
8. for d3 in range(0, 1 + price // deno3):
9. if d1 * deno1 + d2 * deno2 + d3 * deno3 == price:
10. print(d1, d2, d3)
11. else:
12. print('No')

Line 2 uses the split() function to receive three fields (strings). To map those to integers, we can use the
map() function. Lines 6�8 run a triply-nested loop which check all possible combinations of the three
denominations, upper bounding by the price. For instance, if the price is 550, there is no point in using
more than five 100-rupee notes. If such an exact combination is found, we print it at Line 10. If no such
combination exists, then we print No at Line 12 (Line 11 is an else corresponding to the outermost for
loop).

UNIT SUMMARY

We explored various basic control constructs in Python such as conditionals and loops. We solved
various problems using those constructs. We also looked at various loop modifiers which allow special
control flow.

EXERCISES

Multiple Choice Questions

1. What is the output of the following program for the input 100 99?

n1, n2 = input().split()
if n1 < n2:
 print(n1, "<", n2)
elif n1 == n2:
 print(n1, �==�, n2)
elif n1 < n2:
 print(n1, �again <�, n2)

46

else:
 print(n1, ">=", n2)

A. 100 < 99
B. 100 >= 99
C. 100 == 99
D. 100 again < 99

2. Suggest a value for the dob variable that illustrates usefulness of short-circuiting for the following
conditional statement.

if len(dob) >= 5 and dob[3:5] == "08":
 print("You are an August person.")

A. �29/10/1999�
B. �29/08/2000�
C. �1/1/2001�
D. �123�

3. What is the output of the following program?

numbers = [65, 32, -3, 32, 43, 32, -22, 2, -5, 64, 0, 8]
i = 0

for n in numbers:
 if 2**i == n:
 print(n)
 i = i + 1

A. 32 32 64 8
B. 32 64 8
C. 32 64
D. 32

4. What should be the value of the expression X in the following program to print all the squares between
3 and 99?

47

import math

for n in range(3, 100):
 for i in range(2, int(math.sqrt(n)) + 1):
 if X:
 print(n)

A. i + 1 == n
B. i * i == n
C. sqrt(n) * sqrt(n) == i
D. n * n == i * i

5. What does the following program print?

n = int(input())
sumf = 0

for i in range(0, n):
 for j in range(0, n):
 if i * j == n:
 break
 else:
 continue

 sumf = sumf + i

print(sumf)

A. Sum of all the proper factors of n
B. Sum of all the prime factors of n
C. Sum of all the numbers smaller than n
D. Sum of all the factors that are square roots

Answers of Multiple Choice Questions

1. A: 100 < 99
2. D: 123
3. D: 32
4. B: i * i == n

48

5. A: Sum of all the proper factors of n

PRACTICAL

1. Write a program to find the second maximum in a list.
2. Implement Python�s exponentiation operator (**).
3. Modify our denominations program to support a fixed number of notes for each

denomination.
4. Given name to state mapping of your friends, find all the friends from Telangana.
5. Given a number, find all its unique prime factors.

Dynamic QR Code for Further Reading

49

d

UNIT SPECIFICS

Through this unit we discuss the following aspects:

● Separating a functionality using functions

● Grouping functions using modules

● Grouping modules using packages

RATIONALE

Good programming demands grouping coherent statements that solve a given problem. This

grouping makes the calling code free of internal details, and also makes the code readable. This

modularization is achieved at different levels in Python. Grouping of statements together is done

using functions. Functions related to a particular domain are grouped into modules. Finally,

modules can be clubbed together into a full-fledged package. We uncover this three-level hierarchy

in this unit by creating our own functions, modules, and packages.

PRE-REQUISITES

Units 1 and 2

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U3-O1: Create new functions and call them

U3-O2: Create new modules and use them

U3-O3: Create new packages from the modules

3

Functions, Modules,

and Packages

50

Unit-3

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6

U3‐O1 3 3 3 - 3 1

U3‐O2 1 1 2 2 1 -

U3‐O3 2 1 3 1 2 1

As code sizes grow and we work on larger projects, it is imperative to organize our code. We
start this unit with a block diagram depicting the relationship between functions, modules, and
packages. We then delve deeper into each of them.

The above diagram shows the hierarchy. A package may contain multiple modules and each
module may contain multiple functions. For instance, if we are designing a game, within the
package MyGame, we can have different modules which deal with the graphical user interface
(GUI), or database (DB), or the logic of the game. Within each module, we may group related
functions. For instance, a DB module may have to load data from a database (which may be
a relational database such as SQL or using files on disk), store the current game and scores
in the database, and find information about a user in it. We will explore this hierarchy bottom
up.

51

3.1 Functions

Functions allow us to separate a specific functionality and reuse it from multiple places. For instance,
we use the functions print and len() which are defined in the standard Python library. But we can write
our own functions too!

Let�s begin with defining a function for printing a message and calling it in different ways.

1. def hello(): # function definition
2. print("Hello World!")
3.
4. hello() # function call
5.
6. if False:
7. hello() # function call inside a conditional
8.
9. for i in range(1, 3):
10. hello() # function call inside a loop

Lines 1�2 define a new function hello() using def keyword. Simply defining a function does not execute
it. We need to call it explicitly, which we do at Line 4. Functions can be called from other control
constructs too: for instance, from a conditional at Line 7 and from a loop at Line 10. The output of the
whole program is three instances of �Hello World!�, one from Line 4, none from Line 7, and two from
Line 10. The main module (Lines 3 � 10) from where we call a function is called a caller.

Let us now modify our hello()�s definition to support different messages being printed. This demands
an argument.

1. def hello(msg):
2. print(msg)
3.
4. hello("Hello World!")
5.
6. if False:
7. hello("Hello from if")
8.
9. for i in range(1, 3):
10. hello("Hello from loop")

52

The output of the above code is:

Hello World!
Hello from loop
Hello from loop

Such arguments can help tune the functionality. This is what we do with a print() function.

Recall our program from Unit 2 which found out if a range of numbers is prime or not. We will modify
it to use functions and see how the program looks simplified.

Example: Find out if numbers from 3-to-100 are prime, using functions.

Here is the original program without using functions.

1. import math
2.
3. for n in range(3, 100+1):
4. print(n, ��, end=��)
5.
6. if n % 2 == 0:
7. print(�Composite�)
8. continue
9.
10. for i in range(3, 1 + int(math.sqrt(n)), 2):
11. if n % i == 0: # if i divides n
12. print('Composite')
13. break
14. else: # else corresponding to for
15. print('Prime')

Which part can we move to a function? That is up to us. For instance, we can simply make printing
Prime or Composite inside a function. Alternatively, we can convert the for loop at Line 12 into a
function. From the perspective of this example, we can make primality testing of a given number as a
function. This function can then be called from the loop at Line 3.

1. import math
2.
3. def isPrime(n):
4. if n % 2 == 0:
5. print(�Composite�)
6. continue # there is no enclosing loop

53

7.
8. for i in range(3, 1 + int(math.sqrt(n)), 2):
9. if n % i == 0: # if i divides n
10. print('Composite')
11. break
12. else: # else corresponding to for
13. print('Prime')
14.
15. for n in range(3, 100+1):
16. print(n, ��, end=��)
17. isPrime(n)

See how we have moved the code to the isPrime() function and the main module is simplified (Lines
15 � 17). Unfortunately, this code reorganization poses an issue. The continue statement at Line 6 is
now no longer inside a loop. Hence, it is a syntax error. From the perspective of a function, we want
that after printing Composite at Line 5, the control should go back to the caller and the next number
should be checked for primarily. This can be done using a return statement.

 6. return

Now the program works as expected. It will be nice however, if the caller can take charge of the
processing after finding if a number is prime or not. This demands the function isPrime() to return True
or False.

1. import math
2.
3. def isPrime(n):
4. if n % 2 == 0:
5. return False
6.
7. for i in range(3, 1 + int(math.sqrt(n)), 2):
8. if n % i == 0:
9. return False
10. else:
11. return True
12.
13. for n in range(3, 100+1):
14. if isPrime(n): print(n, end=', ')

Lines 5, 9, and 11 return a boolean value depending upon the argument number�s primality. If the
number is composite, the caller does not do anything, otherwise it prints the number. The output of the
above code is:

54

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,

Do we need to always make 100 calls to get these prime numbers? Not necessarily. We can invoke a
function only once and return a full list of primes! Let�s do it. This will require us to push the for loop
inside the function.

1. import math
2.
3. def getAllPrimes(maxn): # find primes upto maxn
4. allPrimes = []
5.
6. for n in range(3, maxn+1):
7. if n % 2 == 0:
8. continue # we can use this now
9.
10. for i in range(3, 1 + int(math.sqrt(n)), 2):
11. if n % i == 0:
12. break
13. else:
14. allPrimes.append(n) # add to the list
15.
16. return allPrimes
17.
18. # main module begins here
19. print(getAllPrimes(100))
20. print(getAllPrimes(50))

The argument to the function is now the maximum number up to which we wish to check primality. We
store all such primes into a list allPrimes initialized in Line 4. As soon as we find a prime number (Line
13), we push it to this list (Line 14). This populated list is finally returned from the function (Line 16).
Lines 19 and 20 call the function with different maxn values, and print the lists as below.

[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Global Variables
In the above example, the list was defined inside the function and returned to the caller. We can as well
define the list outside the function, populate it inside the function, and print the populated list from the
main module (without the function returning it). This requires the list to be defined globally.

55

1. import math
2.
3. def getAllPrimes(maxn): # find primes upto maxn
4. global allPrimes # I want to access allPrimes list
5.
6. for n in range(3, maxn+1):
7. if n % 2 == 0:
8. continue # we can use this now
9.
10. for i in range(3, 1 + int(math.sqrt(n)), 2):
11. if n % i == 0:
12. break
13. else:
14. allPrimes.append(n) # add to the list
15.
16. # main module begins here
17. allPrimes = []
18. getAllPrimes(100) # populate allPrimes
19. print(allPrimes)
20. getAllPrimes(50) # populate allPrimes
21. print(allPrimes)

The function getAllPrimes() remains almost the same, except for two changes. One: at Line 4, it marks
allPrimes to be a global variable. Two: it does not (need to) return allPrimes. allPrimes is now a regular
variable in the main module initialized to an empty list at Line 17. It is populated by getAllPrimes() at
Lines 18 and 20. Note that after these two function calls, we simply print allPrimes list in Lines 19 and
21. What will be the output of the code?

If you said that the output will remain the same, that is not correct. Here is the output.

[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 3, 5, 7, 11,
13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Note how the second call to getAllPrimes() has appended the prime numbers to the original list. This
happened because we forgot to initialize the list to empty before calling getAllPrimes(50) at Line 20.

 Remember : Global variables make the code easy, but can also lead to initialization errors if we are
not careful.

To understand the scope of global variables, let�s look at a simple example. What will be the output of
this code?

56

1. g = 10 # global variable
2. print("1:", g).
3.
4. def fun():
5. g = 20 # local variable
6. print("3:", g)
7.
8. g = 30 # global variable
9. print("2:", g)
10. fun()
11. print("4:", g)

A function can be defined in the middle of the main module (Line 4). The program works as follows.

Line 1: assigns 10 to a global variable g.

Line 2: prints 1: 10

Line 8: assigns 30 to the same global variable g.

Line 9: prints 2: 30

Line 10: makes a function call to fun() at Line 4.

Line 5: assigns 20 to a local variable g. This is a new variable, different from the global g.

Line 6: prints 3: 20

The control now comes back to the caller. The local variable is no longer accessible.

Line 11: prints 4: 30. This is the same earlier global variable g.

To summarize, when fun() accesses a variable, it is the local variable by default. If we want it to access
the global variable g, we will have to add the statement: global g, similar to the last example (global

allPrimes). Then the output will change to 4: 20.

 Good Programming Practice : If there are central structures holding data which you need to access
from several functions, then only use global variables. Otherwise, avoid globals and pass the data as
arguments to functions.

Example: Perfect numbers.

A number is perfect if the sum of its proper divisors equals itself. For instance, 6 is a perfect number as
its proper divisors (1, 2, 3) sum to 6. Another perfect number is 28 = 1 + 2 + 4 + 7 + 14. Let�s write a
program to find perfect numbers using functions.

The main module can be written as below.

57

 10. for n in range(1, 10000):
 11. factors = findFactors(n)
 12.
 13. if n == sum(factors):
 14. print(n, ":", factors)

We make use of two functions: findFactors and sum. The latter is a predefined function in Python, while
we will have to write the former. With our experience of primality testing, we know how to write it.

1. def findFactors(n):
2. factors = []
3.
4. for f in range(1, n):
5. if n % f == 0:
6. factors.append(f)
7.
8. return factors;

Example: Fibonacci strings

Like Fibonacci numbers, we can define Fibonacci strings, which are strings over binary digits 0 and 1.

Fib(0) = �0�, Fib(1) = �01�

Fib(n) = Fib(n-1) + Fib(n-2), where + is Python�s string concatenation

A few initial Fibonacci strings are:

0, 01, 010, 01001, 01001010, 0100101001001, �

Fibonacci strings have a special property. If we remove the last two digits, then the string reads the same
forward and backward. Such strings are called palindromes (e.g., nitin, a, malayalam, amma, tattarrattat,
and if you permit spaces and punctuation, �borrow or rob�, �was it a car or a cat I saw?�, �never odd or
even�, �A man, a plan, a canal � panama�).

Let�s check if Fibonacci strings have this fascinating property.

1. def isPalindrome(bstring):
2. blen = len(bstring)
3. first = bstring[:blen // 2] # integer division to get the index
4. second = bstring[(blen + 1) // 2:]
5.
6. if first == second[::-1]: # extended range, for reversing
7. return True
8.

58

9. return False
10.
11. # main module begins
12. first = "0"
13. second = "01"
14. i = 0
15.
16. while i < 10:
17. if i >= 2 and isPalindrome(first[:-2]):
18. print(first[:-2] + " is a palindrome")
19.
20. first, second = second, second + first
21. i = i + 1

We define the first two strings in Lines 12 and 13. We check this property for the first few Fibonacci
strings (Line 16). The strings are generated in Line 20 using the multiple assignment form. Line 17 uses
a conjunct to call function isPalindrome() by removing the last two binary digits of the eligible strings.
If the property is satisfied, all the strings should get printed by Line 18.

The function isPalindrome() splits the given string into two halves. [0:blen // 2] is the first half, while
the second half is [(blen + 1) // 2: blen], which we use in Lines 3 and 4. Interestingly, the expressions
work whether the string is even length or odd. Note that we use the same variable names (first and
second) in both the main module and the function, but both refer to two different entities. Line 6 uses a
peculiar syntax [::-1] which defines a range, but also uses a step (-1 in this case, 1 by default) which
allows us to reverse the string second. If the two strings are the same, we declare it to be a palindrome.

The output of the above code is:

0 is a palindrome
010 is a palindrome
010010 is a palindrome
01001010010 is a palindrome
0100101001001010010 is a palindrome
01001010010010100101001001010010 is a palindrome
01001010010010100101001001010010010100101001001010010 is a palindrome
01001010010010100101001001010010010100101001001010010100100101001001010010100100
1010010 is a palindrome

An interesting aspect of writing functions is that we can reuse it in different contexts. For instance, the
isPalindrome() function works not only for binary strings, but also for arbitrary strings.

59

Default Arguments
Consider a function wherein we need to initialize a sequence of integers. We need to know the size of
the sequence expected and the value to which the sequence needs to be initialized. The function can be
written as:

1. def initSeq(size, val):
2. seq = []
3.
4. for i in range(0, size):
5. seq.append(val)
6.
7. return seq

The function can be called as:

initSeq(10, 0)
initSeq(100, �ABCD�)
initSeq(1000, [�A�, �B�, �C�, �D�])

This is good, since the same function can be used with multiple types of variables (integers, strings,
lists), while the most common usage in an application could be integers. Also, the most common
initialization may be to value 0. Can we avoid mentioning that?

Default arguments allow us to specify fewer arguments than what the function usually takes, and still
achieve the desired (most common) functionality. Have we used such a feature before? We did. Recall
that print() function takes optional arguments for sep and end. They default to the most common values
of space and newline. We would like to do something similar with our initSeq(). We would like to call
it as initSeq(10) and it should return a sequence of 10 zeros. Zero should be the default value.

Our program with default arguments looks as below.

1. def initSeq(size, val = 0):
2. seq = []
3.
4. for i in range(size):
5. seq.append(val)
6.
7. return seq

60

Note how we specified assignment to val at Line 1. That is the default value when unspecified. How do
we unspecify a value? By calling the function as: initSeq(10), without mentioning the initialization
value. Thus, the following two calls are equivalent.

initSeq(10, 0)

initSeq(10)

Default arguments can come in handy for incremental software development while supporting backward
compatibility. For instance, let�s say that we have been asked to extend the functionality of initSeq() to
include support for increasing sequences such as (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Note that our current code
cannot create such a sequence. Now, if we add another argument, the existing callers using the original
functionality would be affected � and their code will have to be rewritten. Can default arguments help
us here?

1. def initSeq(size, val = 0, inc = 0):
2. seq = []
3.
4. for i in range(size):
5. seq.append(val)
6. val = val + inc
7.
8. return seq
9.
10. print(initSeq(10))
11. print(initSeq(9, 1))
12. print(initSeq(8, "1", "0"))
13. print(initSeq(7, ['A', 'B', 'C'], ['D']))

We define a second default argument inc (Line 1) and use it to update the value val (Line 6). Let�s see
how each of the calls to initSeq() work.

● Line 10 creates a sequence of 10 integers with value 0. The update from 0 to 0 in Line 6 is
redundant but does not affect correctness. Thus, the original code continues to work as before.

● Line 11 also works as before, with the value set to 1 instead of the default zero.
● Line 12 is the new call using strings. It initializes a sequence of 8 binary strings representing

powers of 2.
● Line 13 is the new call using lists. Can you find out what it does?

The output of the above program is:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 1, 1, 1, 1, 1, 1, 1]
['1', '10', '100', '1000', '10000', '100000', '1000000', '10000000']
[['A', 'B', 'C'], ['A', 'B', 'C', 'D'], ['A', 'B', 'C', 'D', 'D'], ['A', 'B', 'C', 'D', 'D', 'D'], ['A', 'B', 'C', 'D', 'D',
'D', 'D'], ['A', 'B', 'C', 'D', 'D', 'D', 'D', 'D'], ['A', 'B', 'C', 'D', 'D', 'D', 'D', 'D', 'D']]

61

Recursion
L. Peter Deutsch said: to iterate is human, to recurse, divine. Recursion is when a function calls itself
(directly or indirectly). It may sound funny, but we use recursive formulation all the time. Recall our
Fibonacci sequence Fib(n) = Fib(n - 1) + Fib(n - 2), or factorial Fact(n) = n * Fact(n - 1). In fact, some
of the other computations could also be modeled using recursion. For instance, we can say that
sum(list[:]) == list[0] + sum(list[1:]).

To start with, let�s implement our initSeq() recursively. Note that currently it is implemented iteratively
(using a for loop at Line 4). How should its recursive formulation be?

1. initSeq(size, val) = one element with val, followed by (size - 1) elements with val

 = [val] + initSeq(size - 1, val)

2. initSeq(0, val) = []

Equation 1 is the inductive step, while Equation 2 is the base case (which allows recursion to stop).
Let�s implement the function using our formulation.

1. def initSeq(size, val):
2. if size == 0: # base case
3. return []
4.
5. return [val] + initSeq(size - 1, val) # inductive step

Note the similarity between Equation 1 and Line 5 (also Equation 2 and Lines 2�3).

Example: Print a list recursively.

The recursive formulation for printing a list recursively is:

1. printrec(list) = print the first element, followed by printing the remaining elements

= print(list[0])

 printrec(list[1:])

2. printrec([]) = pass

Let�s implement the program as per this formulation.

1. def printrec(mylist):
2. if mylist == []: # base case
3. print()
4. return
5.

62

6. print(mylist[0], '', end='') # inductive step
7. printrec(mylist[1:])
8.
9. printrec([0, 1, 2, 3, 4])
10. printrec(["king,", "are", "you", "glad", "you", "are", "king?"])

The if condition at Line 2 implements the base case, while the processing at Lines 6 and 7 follows the
recursive formulation in Equation 1 (the other arguments to print are for pretty-printing). The output of
the program is as expected.

What if I want to print the list in reverse? What would be the recursive formulation? How would the
program look like?

1. def printrec(mylist):
2. if mylist == []: # base case
3. print()
4. return
5.
6. printrec(mylist[1:])
7. print(mylist[0], '', end='') # inductive step
8.
9. printrec([0, 1, 2, 3, 4])
10. printrec(["king,", "are", "you", "glad", "you", "are", "king?"])

It turns out that simply by exchanging Lines 6 and 7, one can get the reversed list.

Example: Binary search

One of the classical search algorithms is binary search in a sorted array. We will assume ascending
unique values, and implement this search recursively. The idea is to go to the middle of this sorted
sequence, and check if the key is found. If yes, we return the index. Otherwise, we decide to recursively
search either in the left or the right half.

Do we use binary search in real life?

● When a teacher asks you to go to page 140, do you flip through the first 139 pages?
● If we need to find the meaning of a word supercalifragilisticexpialidocious in a dictionary, how

do we reach the word?
● If we want to search for the phone number of Star Garage in a directory, do we go sequentially?

The following example illustrates binary search. Consider the following sorted array of numbers, with
our search key as 10. We first check the middle element (53). Since 10 is smaller than 53, we ignore the
right half of 53 and choose to search in the first half (-4�50). The middle element of this sequence is
9, which is our second probe. Since our search key 10 is larger than 9, we choose to search on the right

63

hand side of 9 (10..50). The middle element of this sequence is 11, which is our probe 3. Since our
search key 10 is less than 11, we choose to search its left half (10..10). We finally find our search key.

Two important differences between linear search and binary search are:

1. Linear search works with unsorted sequences also.
2. The number of probes a binary search performs is much smaller than that in linear search.

The program for binary search can be implemented as follows.

1. l = [-4, 2, 5, 9, 10, 11, 50, 53, 69, 77, 89, 91, 93, 99, 102] # must be sorted
2.
3. def binarysearch(value, start, end): # search for value in l[start:end]
4. global l
5.
6. if start < end: # while there is at least one element
7. mid = (start + end) // 2
8.
9. if l[mid] == value: # found the element
10. return mid
11. elif l[mid] < value: # go to the right half
12. return binarysearch(value, mid + 1, end)
13. else: # go to the left half
14. return binarysearch(value, start, mid)
15.
16. else: # did not find the key
17. return -1
18.
19. print(binarysearch(10, 0, len(l))) # 4
20. print(binarysearch(-4, 0, len(l))) # 0
21. print(binarysearch(12, 0, len(l))) # -1
22. print(binarysearch(92, 0, len(l))) # -1
23. print(binarysearch(102, 0, len(l))) # 14
24. print(binarysearch(111, 0, len(l))) # -1

We make use of a global list (Lines 1 and 4). The search function is called with the start and the end
indices, along with the key to search (Lines 19 � 24). The processing checks if there is at least one
element in between the start index and the end index (Line 6). If there isn�t, that means the key is not
found and we return -1 (Line 17). Otherwise, we check the middle element of the sequence for the key

64

(Line 9). If it is found, we return its index (Line 10). Otherwise, we decide to continue searching in the
right (line 12) or the left half (Line 14).

3.2 Modules
Modules are what we have been writing so far. Each program we have created is a module, just that we
did not look at them that way. Typically, a module is a collection of cohesive functions. For instance,
while designing a large application, we may want to keep all the functions related to database
processing, frontend, error handling, utilities in different modules. Let�s recall our prime number
program. Say, we have stored it in a file primefun.py.

1. import math # name of this file is primefun.py
2.
3. def isPrime(n):
4. if n % 2 == 0:
5. return False
6.
7. for i in range(3, 1 + int(math.sqrt(n)), 2):
8. if n % i == 0:
9. return False
10. else:
11. return True
12.
13. for n in range(3, 100+1):
14. if isPrime(n): print(n, end=', ')
15. print()

We can now make use of this module from a different Python script or program. Let�s define it in a file
primefunmodule.py.

import primefun

Note that there is only one line in this file. We can now execute this script.

$ python3 primefunmodule
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,

Where do we get this output from? From Lines 13�15 of primefun.py which is imported by
primefunmodule.py. Typically, when we make use of modules, the module files have functions and
global variables, and do not contain the executable code (such as Lines 13�15). Note that the module
primefun itself imports another module called math (Line 1).

Let�s make further use of the imported module.

65

1. import primefun
2.
3. for n in range(3, 50+1):
4. if primefun.isPrime(n): print(n, end=', ')
5. print()

Thus, we can call a function from a module using modulename.functionname syntax (Line 4). The
output of the above code is:

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

Note that the first line is printed by the code in primefun.py, while the second one is by the code in
primefunmodule.py. We can also rename an imported entity and can import everything from a module,
so that we can directly make use of the functions and globals from that module (instead of using the
syntax modulename.functionname).

1. import primefun
2.
3. for n in range(3, 50+1):
4. if primefun.isPrime(n): print(n, end=', ')
5. print()
6.
7. myprime = primefun.isPrime # shorthand name
8.
9. if myprime(22): print(22) # use the shorthand name
10. else: print("22 is composite")
11.
12. from primefun import * # import everything from a module
13.
14. if isPrime(23): print(23) # and use the function directly
15. else: print("23 is composite")

Line 7 creates a shorthand name (like a pointer) to our isPrime function, which we can use in Line 9.
This avoids using primefun.isPrime() type syntax as in Line 4. another way to use the isPrime() function
directly is by importing only the function isPrime from the module primefun or importing everything
(indicated by *) as in Line 12, and then using the function in Line 14. The output of the above code is:

66

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
22 is composite
23

Note: You may see a directory named __pycache__ created when you use modules. Python precompiles
the used modules and stores it in a binary form in this directory.

Example: Create a module to track academic performance.

Let�s create an academics module which tracks the courses taken, their total credits, and earned points.
We can also then provide a function to compute the CGPA. How do we store this information? For now,
we will store it in associative sequences. For instance:

Courses CS1100 CS1200 AM1100 �

Credits 9 12 9 �

Earned points 10 9 9 �

Thus, ith course has maximum credits of ith credits and our earned points are stored at the ith place. Thus,
these three lists run in parallel.

What should be the functions supported in our academics module?

● Add a new course, along with its total credits and earned points.
● Drop a course (some courses are heavy).
● Print the whole academic record.
● Know the current CGPA = sum of (credits * points) / sum of credits

The above functions can be defined as follows.

def add(course, creditstotal, earnedpoints):
�
def drop(cc):
�
def cprint():
�
def cgpa():
�

Note that the lists are not passed as parameters. This means, we can keep those global.

A typical user of our module may use it as follows.

67

from academics import *

add("CS1100", 9, 10)
add("CS1200", 12, 9)
add("AM1100", 9, 9)
cprint()
print("1st Sem CGPA:", cgpa(), "\n")

add("EE2101", 12, 8)
add("CS2200", 12, 10)
drop("EE2101")
add("CS2310", 6, 10)
add("CS2710", 6, 9)
cprint()
print("2nd Sem CGPA:", cgpa(), "\n")

And a typical output is:

course credits earned
CS1100 9 10
CS1200 12 9
AM1100 9 9
1st Sem CGPA: 9.3

course credits earned
CS1100 9 10
CS1200 12 9
AM1100 9 9
CS2200 12 10
CS2310 6 10
CS2710 6 9
2nd Sem CGPA: 9.5

Without reading further, try writing your own academics module to support the above functionality. We
now show the complete module.

1. courses = []
2. credits = []

68

3. earned = []
4.
5. def add(cc, cr, ea):
6. courses.append(cc)
7. credits.append(cr)
8. earned.append(ea)
9.
10. def drop(cc):
11. index = courses.index(cc) # find the index of cc
12. #TODO: check if index is valid
13. courses.pop(index) # remove the element at index
14. credits.pop(index)
15. earned.pop(index)
16.
17. def cprint():
18. ii = 0
19. print("course", "credits", "earned")
20.
21. for cc in courses:
22. cr = credits[ii]
23. ea = earned[ii]
24. print(cc, cr, ea)
25. ii = ii + 1
26.
27. def cgpa():
28. numerator = denominator = 0
29. ii = 0
30.
31. for cr in credits:
32. ea = earned[ii]
33. numerator = numerator + cr * ea
34. denominator = denominator + cr
35. ii = ii + 1
36.
37. return numerator / denominator

One can enhance the above module in multiple ways, for instance, to print semester-wise SGPA, to
support audit courses, etc.

 Future Connect : We can store the academic information in a text file and read it from a Python
program.

Example: Create a module for matrix operations.

69

Let�s create a matrix module which can have some useful functions such as addition and multiplication.
To initialize the matrix, let�s add another function, and to test it, let�s add a printing function too. The
four function signatures would look like this:

def minit(rows, cols, val = 0, inc = 0):
�
def mprint(mat):
�
def madd(mat1, mat2):
�
def mmult(mat1, mat2):
�

How is a matrix represented? It can be a list of lists. For instance, [[1, 2, 3], [4, 5, 6]]. Before reading
further, it would be helpful to try out writing the above four functions yourself.

Here is how we will be able to use it in a client program, assuming the above module is stored in
matrix.py.

1. from matrix import *
2.
3. mat1 = minit(4, 4, 1, 0)
4. mat2 = minit(4, 4, 10, 2)
5. mprint(mat1)
6. mprint(mat2)
7.
8. mat3 = madd(mat1, mat2)
9. mprint(mat3)
10.
11. mat4 = mmult(mat1, mat2)
12. mprint(mat4)

The output of the above program is:

1 1 1
1 1 1
1 1 1

10 12 14
16 18 20

70

22 24 26

11 13 15
17 19 21
23 25 27

48 54 60
48 54 60
48 54 60

The four matrices correspond to the four mprint statements in the program (Line 5 for mat1, Line 6 for
mat2, Line 9 for mat3 which is addition of mat1 and mat2, while Line 12 for mat4 which is the
multiplication of mat1 and mat2).

Let�s now look at how to implement the four functions.

1. def minit(rows, cols, val = 0, inc = 0): # using default arguments
2. mat = []
3.
4. for i in range(rows):
5. mat.append([]) # create ith row
6.
7. for j in range(cols):
8. mat[i].append(val) # create jth column
9. val = val + inc
10.
11. return mat
12.
13. def mprint(mat):
14. for i in range(len(mat)):
15. for j in range(len(mat[i])):
16. print(mat[i][j], '', end='')
17.
18. print() # newline after every row
19.
20. print() # newline after the matrix
21.
22. def madd(mat1, mat2):
23. # TODO: check if their sizes are the same.
24. mat3 = []
25.
26. for i in range(0, len(mat1)):
27. mat3.append([])

71

28.
29. for j in range(len(mat1[i])):
30. mat3[i].append(mat1[i][j] + mat2[i][j])
31.
32. return mat3
33.
34. def mmult(mat1, mat2):
35. # TODO: check if cols of mat1 matches rows of mat2.
36. mat3 = []
37.
38. for i in range(0, len(mat1)):
39. mat3.append([])
40.
41. for j in range(len(mat2[0])):
42. psum = 0
43.
44. for k in range(len(mat1[i])): # triply nested loop
45. psum = psum + mat1[i][k] * mat2[k][j]
46.
47. mat3[i].append(psum)
48.
49. return mat3

The functions are self-explanatory, once you know what matrix addition and multiplication mean. The
same library works with integers, reals, and complex numbers. For instance, we can use the module as
follows.

mat1 = minit(4, 4, 1.2, 0) # real numbers

mat2 = minit(4, 4, 10 + 4j, 2) # complex numbers

mat3 = madd(mat1, mat2)
mat4 = mmult(mat1, mat2)

3.3 Packages
A package encapsulates multiple modules of a project. From a data organization perspective, a module
is stored in a .py file, while a package is the directory containing the .py file. We can then access a
module mod in package pack as pack.mod. In general, a module file may not be directly inside a package
directory, but may be nested deeper, due to multiple subdirectories � for instance,
pack.subdir1.subdir2.mod. In such cases, each of subdir1, subdir2 etc. are called subpackages.

Let�s consider a concrete example of a project. Say, we wish to implement a simple game � tic-tac-toe.
A sample is shown below. In a 3x3 grid, two players fill in two symbols (say, X and O) in empty cells

72

alternatively, and the first person getting three symbols in a row or a column or a diagonal wins.
Sometimes, the game may end in a draw.

The game can be nicely implemented as a package, since it has multiple components. We need to have
the game logic in one module, and game display in another. We can add more functionality such as
storing the game in a file or storing the scores of the players which can be loaded from a database etc.
But for now, we will constrain ourselves with two subpackages: logic and display. Within each of these
subpackages, we may have multiple modules; for instance, text-based display and GUI-based display.
The overall directory structure looks like this:

 tictactoe/ # package

├── __init__.py # initializer

├── display # subpackage

│ ├── __init__.py # initializer

│ ├── gui.py # GUI module

│ └── text.py # text module

├── logic # subpackage

│ ├── __init__.py # initializer

│ └── twoplayer.py # module

└── internal # regular directory, not a subpackage

The outermost directory represents the main package. Thus, if we have a user program using this
package, say ttt.py, it will have the code as below.

import tictactoe

print("in ttt")
tictactoe.loadGame("text") # argument decides whether to load the game in text or GUI.

The package directory contains two subpackages: display and logic. It also contains a directory named
internal, which can be used for internal bookkeeping. It is not a subpackage.

__init__.py is a special file of a package / subpackage which marks the enclosing directory as a package
and initializes it. Without this file, the directory is not considered to be a package / subpackage (like

73

internal directory). Thus, the code in __init__.py gets executed automatically when we import the
corresponding package / subpackage. This can be useful to initialize our data structures etc. Thus, if we
add appropriate print() statements to __init__.py files, we will see the following output before the game
loads.

$ python3 ttt.py
in tictactoe/logic/init # subpackage
in tictactoe/display/init # subpackage
in tictactoe/init # package
in ttt # application

Note how the initializations are happening. The innermost subpackages are initialized, and then the
outer packages get initialized, only after which, the application begins. This happens because our
tictactoe package also imports the internal subpackages, which executes the __init__.py files in those
subdirectories.

While our code needs to use the fully qualified path package.subpack1.subpack2.variable, we can use
shorthand idea to reduce the typing. For instance:

import tictactoe.logic
import tictactoe.display.text

board = tictactoe.logic.board # shorthand data
show = tictactoe.display.text.show # shorthand function

�
 if board[row][col] == symbol:
 �
 show() # same as tictactoe.display.text.show()

One thought that may occur here is whether we can use import *. By default, import * does not import
everything from the package; it depends upon a variable called __all__ which needs to be defined in
__init__.py, mentioning which subpackages to import. For instance, we can add the following in
tictactoe/__init__.py:

__all__ = [�logic�, �display�]

and can include further __all__ variables inside logic/__init__.py and display/__init__.py, only these
subpackages are imported with import *. We should also note that typically, import * is not a good
programming practice in the production environment, but can simplify fast prototyping. We avoid
import * in our tictactoe code and use explicit fully-qualified names for the subpackages.

74

Since the logic of the overall game runs into multiple files spanning several lines, we will avoid showing
the complete code here. You are encouraged to look at this book�s webpage for the full code. But we
will show you glimpses of the code�s execution.

$ python3 ttt.py
in tictactoe/logic/init
in tictactoe/display/init
in tictactoe/init
in ttt

_ _ _
_ _ _
_ _ _

Player o: 0 0

o _ _
_ _ _
_ _ _

Player X: 1 1

o _ _
_ X _
_ _ _

Player o: 2 0

o _ _
_ X _
o _ _

Player X: 2 1

o _ _
_ X _
o X _

Player o: 1 0

o _ _
o X _
o X _

Player o wins.

The left textbox shows text-based execution, while the right side screenshots show the GUI based
execution of the same program � with the difference of tictactoe.loadGame("text") versus

tictactoe.loadGame("gui"). Since the internal processing logic remains the same, we reuse that

75

functionality, while changing only the display. The code can be enhanced in multiple ways, and we
encourage the readers to try out the enhancements.

For convenience, we show the screenshots of the text and the gui based versions below.

After changing ttt.py to load the gui, the screenshot is as below.

76

UNIT SUMMARY

We learned various ways to group statements using functions, functions using modules, and modules
using packages. In the process, we developed slightly larger codes which allow us to develop
applications.

EXERCISES

Multiple Choice Questions

1. What is the output of the following program?

def swap(x, y):
 x, y = y, x

x, y = 1, 2
swap(x, y)
print(x, y)

77

A. 1 2
B. 2 1
C. 1 1
D. 2 2

2. What is the output of the following recursive code?

def rprint(l):
 if len(l) > 0:
 rprint(l[1:])
 print(l[0], end='')

rprint([1, 2, 3, 4, 5])

A. 12345
B. 2345
C. 54321
D. 5432

3. Consider the following code to compute the nth Fibonacci number.

def fib(n):
 if n < 2: return 1
 return fib(n - 1) + fib(n - 2)

If the function is invoked as fib(5), how many total invocations of the function fib() happen? That is,
how many times, fib() gets called in total.

A. 5
B. 8
C. 9
D. 15

4. Consider a file dateutil.py which has useful functions such as today(), diff(date1, date2), etc. We want
to use this function today() in our program written in file main.py in the same directory. How should
this be done correctly?

78

A. Import dateutil in main.py, and call dateutil.today().
B. Since it is the same directory, we can directly call dateutil.today() without an import.
C. Import dateutil in main.py, and call today().
D. Directly call today() without an import.

5. Consider a package structure as below.

 application/ # package

├── __init__.py # initializer

├── display # subpackage

│ ├── __init__.py # initializer

│ ├── gui.py # GUI module

│ └── text.py # text module

├── logic # subpackage

│ ├── __init__.py # initializer

│ └── twoplayer.py # module

└── internal # regular directory, not a subpackage

All the three __init__.py files (in application, display, and logic directories) are empty. A Python
program using application has the following import statement:

import application

Which of the initializer files are executed due to the above import?

A. None of the three
B. __init__.py in application only
C. __init__.py in application, display, and logic
D. __init__.py in display and logic only

Answers of Multiple Choice Questions

1. A: 1 2
2. C: 54321
3. D: 15
4. A: Import dateutil in main.py, and call dateutil.today().
5. B: __init__.py in application only

79

PRACTICAL

1. Extend our isPalindrome() function to work with spaces and punctuation (e.g., �step
on no pets!�).

2. Enhance our academics module to support printing of semester-wise SGPA, apart
from the cumulative CGPA. Further, support it for audit courses, which should be listed,
but should not be counted towards CGPA.

3. Create a module to track your friends� information: name, phone number, date of birth,
native city, website if any, instagram handle if exists. Now define various functions to
add / modify / delete this information. Add further aggregate functionality, such as
finding friends born in a given month, friends from a given city, etc.

4. Extend our tictactoe application to support taking input using mouse clicks (instead of
row and column numbers). Further extend it for one-player game, that is, your program
will be the second player.

5. Create a project for automation of one of the following: library, a general store, hotel
room reservation, restaurant table booking. Design it as a package with appropriate
subpackages and modules. If possible, work as a team so different students develop
different subpackages. Ask one of your other friends to test its functionality.

Dynamic QR Code for Further Reading

80

d

UNIT SPECIFICS

Through this unit we discuss the following aspects:

● Storing and retrieving data from files

● Text processing

● Pattern matching with regular expressions

RATIONALE

If we want our data to be retained across multiple invocations of our Python programs, we will

need to store it on a permanent storage such as disk. In this module we will study reading and

writing files on the hard-disk. Further, we will also be able to use various string functions for

processing text � which is a common scenario for using Python. Processing strings leads naturally

to specifying a pattern, which can be succinctly described using regular expressions, which will be

the last part of this unit.

PRE-REQUISITES

Units 1 and 2

4

4

Files and

Regular Expressions

81

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U4-O1: Read an existing file and write to a file programmatically

U4-O2: Process text in various applications

U4-O3: Match a text with a given regular expression

Unit-3

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6

U4‐O1 3 3 3 - 3 1

U4‐O2 1 1 2 2 1 -

U4‐O3 2 1 3 1 2 1

So far, whatever we stored in variables was unavailable after our Python program finished
execution. In contrast, if you look at the Python program you wrote, you can see it in file.py
file. What is the difference? Variables get stored in the computer�s memory which is transient,
whereas the program was stored in a file on disk, which is a permanent storage. Therefore,
even if the computer reboots, the file continues to be available. We would like to access these
files programmatically.

4.1 File Input/Output

In a Linux terminal, the command to print the contents of a file is cat, which can be used as follows:

$ ls # In Windows terminal: dir

hello.txt
$ cat hello.txt # In Windows terminal: type

This is a text file.
It contains four lines.

The third line is empty.

82

Let�s implement this functionality.

Example: Print contents of a file.

1. myfile = open('hello.txt') # open the file for reading.
2.
3. for line in myfile:
4. print(line)
5.
6. myfile.close() # close the file.

A file is opened for processing in Line 1 (the operating system sets up resources using which the file
can be accessed), processed (Line 3), and closed in Line 6 (allowing the operating system to release the
resources).

Can you guess the output of the above program? Well, it turns out to be more than what one may
anticipate.

This is a text file.

It contains four lines.

The third line is empty.

This is because the file already contains a newline after every line, and print() adds another. We know
how to fix it though (try it out).

It would be nice if we can provide the filename (hello.txt) on the command-line, instead of hardcoding
in the program or prompting the user every time.

$ python3 cat.py hello.txt
This is a text file.
It contains four lines.

The third line is empty.

For accessing command-line arguments, we can use sys.argv. This variable is a list of arguments we
provide while invoking the Python interpreter. Thus, argv[0] is �cat.py� and argv[1] is �hello.txt�.

83

1. import sys
2.
3. myfile = open(sys.argv[1]) # argv[1] contains the second argument
4.
5. for line in myfile:
6. print(line, end='')
7.
8. myfile.close()

We can use this new program on other text files too. For instance:

$ python3 cat.py ../unit1/power.py # our program using ** operator
print(5 + 3 / 4 - 2)
print(3.1*3.2**3.3)
print(1234%10)

Note that since power.py is in another directory, we have provided a relative path.

Example: Copy a file.

We would like to make a copy of a file. Thus, the contents of the two files should be the same after
running our Python program. We would like to execute it as follows:

$ ls
cat.py cp.py hello.txt # initially there are three files.

$ python3 cat.py hello.txt
This is a text file.
It contains four lines.

The third line is empty.

$ python3 cp.py hello.txt hellodup.txt # copies file, does not print anything

$ ls
cat.py cp.py hello.txt hellodup.txt # now there are four.

$ python3 cat.py hellodup.txt
This is a text file.
It contains four lines.

84

The third line is empty.

We know how to read a file and use command-line arguments. But we don�t know how to write to a
file. It needs a second argument to the open() function.

 Past Connect : Second argument can be made optional using default arguments.

1. import sys
2.
3. infile = open(sys.argv[1] , 'r') # open for reading
4. outfile = open(sys.argv[2] , 'w') # open for writing
5.
6. for line in infile: # read
7. print(line, file=outfile, end='') # write
8.
9. infile.close()
10. outfile.close()

You must have guessed why we named our program as cp.py. Linux has a command by that name to
copy files.

Example: Split text into words.

We are given a text file textin.txt having the following contents.

Lexical analyzer groups a sequence of characters into tokens.
Syntax analyzer checks if these tokens adhere to a grammar syntax.

We would like to split it into words, and store it in another file textout.txt, as follows.

1: Lexical
2: analyzer
3: groups
4: a
5: sequence
6: of
7: characters
8: into
9: tokens.

85

10: Syntax
11: analyzer
12: checks
13: if
14: these
15: tokens
16: adhere
17: to
18: a
19: grammar
20: syntax.

We would like to invoke our program as follows.

$ python3 file-split.py textin.txt textout.txt

How do we write such a program? First, we need to utilize reading and writing of files and handling
command-line arguments, as we just did. Apart from that, we need string processing to split a line into
words using space as a separator. To print the word number, we need an iterative way to go over the
words of a line.

1. import sys
2.
3. infile = open(sys.argv[1] , 'r') # textin.txt
4. outfile = open(sys.argv[2] , 'w') # textout.txt
5. ii = 1 # word number
6.
7. for line in infile:
8. words = line.split()
9.
10. for ww in words:
11. print(ii, ww, file=outfile, sep=': ')
12. ii = ii + 1 # word number update
13.
14. infile.close()
15. outfile.close()

Note the similarity in Lines 7 and 10. The former goes over all the lines of a file, while the latter goes
over all the words in a sequence of words. The function split() on Line 8 creates a word-sequence out
of a string.

86

You can see that writing such simple utilities is not difficult in Python. Once you know how to do it, it
is a matter of finding the right functions. Of course, writing programs in the best possible way requires
a significant amount of practice.

Example: Join words to form sentences.

Let�s now do the opposite of what we just did. Given a file textout.txt, containing a word per line
preceded by the word number, can we generate back (almost) the original file textin.txt?

Such a processing requires us file handling similar to the previous example, except for the roles of the
two files reversed for reading and writing. Apart from that, we need to separate out each word from the
number, concatenate all the words, except when full-stop appears. Separating a word from its number
can be done in multiple ways, one of them is using split(), and strings can be concatenated using +
operator. How do we check if a string contains a full-stop?

1. import sys
2.
3. infile = open(sys.argv[1] , 'r')
4. outfile = open(sys.argv[2] , 'w')
5.
6. outline = '' # empty string
7.
8. for line in infile:
9. words = line.strip().split(': ')
10. outline = outline + words[1] + " " # one line, operator + joins strings
11.
12. if "." in words[1]: # found the full-stop
13. print(outline, file=outfile)
14. outline = ''
15.
16. infile.close()
17. outfile.close()

The loop at Line 8 goes over all the lines in the input file. Each line (containing the number and the
word) also contains a newline, which we remove using a function strip(). The function also removes
any preceding spaces and tabs (which we do not have in our file). We then separate the number and the
word using split(). Note how the output of strip() acts as an input to split(). After splitting, the word is
stored in words[1], which we use in Line 12. Note the syntax of checking if a substring exists in a larger
string.

Discussion: The reversal of the output is not perfect. If a line contains a dot in the middle, our program
will split it in multiple sentences (e.g., cse.iitm.ac.in will follow a newline). We can modify the program
to check if a word ends in a dot. But there will be words which will cause issues (e.g., e.g. this line.).

87

Simultaneous reading and writing
It is also possible to read a file and write to it while the file is open. We need to convey our intent a
priori to the Operating System that we wish to open the file for both reading and writing. We illustrate
this with an example.

Example: Replace all the occurrences of a word �mispelt� in a file with �misspelt�.

This simple utility teaches us several aspects of file handling. The given problem can be solved in
multiple ways. But first look at a way which does not work.

1. import sys
2.
3. myfile = open(sys.argv[1], 'r+') # read + write
4.
5. for line in myfile:
6. modline = line.replace('mispelt', 'misspelt')
7. print(modline, file=myfile, end='')
8.
9. myfile.close()

Let�s understand this erroneous code. We open the file in read-write mode in Line 3 (r+ conveys read-
write mode). We then go over each line as before (Line 5), and replace all the occurrences of a word in
that line with another and store the modified line in the modline variable (Line 6). We write this modified
string to the file (Line 7).

For the following text in the input file:

If a word is mispelt it will be corrected.
This is the second line, which also contains mispelt word.
This is the third line.

the modified file is:

If a word is mispelt it will be corrected.
This is the second line, which also contains mispelt word.
This is the third line.

88

If a word is misspelt it will be corrected.

Without reading further, try to reason out why this can happen. Also, you are highly encouraged to try
out whether you observe a similar behavior on your machine.

To understand this peculiar behavior, we need to first know that file input / output is buffered. This
means, the operating system is not going to read the file on disk byte-by-byte, but as a large chunk. This
chunk is copied to a buffer, which essentially is an array having a fixed size. How much buffer we have
read or written is tracked using a pointer (or an array offset). Therefore, when we read / write a line in
a file, this pointer, which is often called a file pointer, moves ahead. As long as the operation is getting
done inside this buffer, further disk processing is avoided (because disk access is costlier than accessing
this buffer in memory). If we end up reading beyond this buffer, the next part of the data is brought
from the disk into another buffer and this process continues. The operating system also knows the size
of the file. So it does not allow reading beyond the current file size.

Now let�s come back and analyze the output of the above erroneous program. Due to Line 5, the
operating system has already read the three lines into its buffer (including the newline characters). This
buffer is processed line-by-line when we only read from the file. But because we also write in Line 7,
it ends up writing at the end of the file (since the three lines have already been read). This adds the
fourth line in the modified file and the file size increases. But where does the file pointer point due to
this writing? It is at the end of the fourth sentence, which is the end of the file. Therefore, the next
iteration of the for loop does not take place (you can check that by printing a message in the loop) and
the loop gets over. The modified file is closed at Line 9 (which makes the operating system dump the
modified buffer to the file on disk, if not done already).

How do we fix this? Clearly, to modify a word we have already read, the file pointer needs to go back
in the file and rewrite that word. This is done using a function called seek(). So our second attempt is to
use it to move the file pointer.

1. import sys
2.
3. myfile = open(sys.argv[1], 'r+')
4.
5. for line in myfile:
6. modline = line.replace('mispelt', 'misspelt')
7. curoff = myfile.tell() # current file pointer
8. myfile.seek(curoff - len(line)) # go back
9. print(modline, file=myfile, end='')
10.
11. myfile.close()

89

Line 7 gets the current file pointer (it is the number of bytes from the start of the file). We then try to go
back to its position prior to reading the line using seek() (Line 8) and then write the modified line there
(Line 9), attempting to overwrite the previously read line.

While our new processing at Lines 7 and 8 is useful, it is not permitted with such whole-file iteration
(Line 5). The Python interpreter flags the following error:

Traceback (most recent call last):
 File "textcorrect.py", line 7, in <module>
 curoff = myfile.tell()
OSError: telling position disabled by next() call

To counter this, we will need to explicitly read a line from the file. This is done using the readline()
function.

1. import sys
2.
3. myfile = open(sys.argv[1], 'r+')
4. line = myfile.readline()
5.
6. while line:
7. modline = line.replace('mispelt', 'misspelt')
8. curoff = myfile.tell()
9. myfile.seek(curoff - len(line))
10. myfile.write(modline)
11. print('Current position:', myfile.tell())
12. line = myfile.readline()
13.
14. myfile.close()

The function readline() is used prior to the while loop condition (Line 6). To find out that the file-pointer
has reached the end-of-file, we need to execute one extra readline(). Thus, if a file contains 10 lines, we
need 11 instances of readline(), only the last one returns the empty string. The rest of the code remains
the same.

Before reading further, can you spot one issue in this code with respect to the output?

Unfortunately, the output is not as expected.

90

If a word is misspelt it will be corrected.
his is the second line, which also contains misspelt word.
his is the third line.

While the two words are corrected, it creates a problem at the start of the lines: T goes missing. Why?

This happens because the new word misspelt is longer than the old one by one character. Therefore,
when we write the modified line in Line 10, it overwrites one character of the next line. We show it
pictorially below.

� m i s p e l t i t w � e d . \n T h i

This buffer gets modified to:

� m i s s p e l t i t w � e d . \n h i

A similar issue occurs on the next line too. Thus, unlike our usual variables (such as strings and
sequences), we cannot insert text in between a file. We will have to overwrite. In other words, the above
program works only when the old and the modified text are of the same length. What happens when the
new text is shorter than the original one? You can again use the pictorial buffer representation above to
find out the answer.

Can we not fix this problem? We can. Instead of reading line-by-line, if we can read the whole file
together, then we can replace all the occurrences of the word and write all the modified contents at once.
This is done using a read() function.

1. import sys
2.
3. myfile = open(sys.argv[1], 'r+')
4. alllines = myfile.read()
5. modlines = alllines.replace('mispelt', 'misspelt')
6. myfile.seek(0) # go to the start of the file
7. myfile.write(modlines)
8. myfile.close()

Line 4 reads the whole file into alllines variable, on which, we perform find-and-replace (Line 5). We
move the file pointer to the start of the file in Line 6, and write the modified lines in Line 7.

91

You may have an alternative idea that instead of seek() in Line 6, can we not close the file, open it in
�w� mode, and write the modified contents? Yes, that is also feasible.

Another alternative is to use a different output file. Thus, we read lines in a loop from the source file,
and write modified lines to the destination file. In such a case, we will always be extending the end-of-
file (this is also called as appending to the file) and are not required to seek. The destination file can
then be copied to the original source file (our cp.py can be useful).

File opening modes
Python supports several modes in which files could be opened. We list those below.

Mode Meaning If the file doesn�t exist? If the file exists?

r Read-only (default) Returns error Normal operation

w Write-only A new one is created It is truncated to empty file first

r+ Read-Write Returns error Normal operation

w+ Read-Write A new one is created It is truncated to empty file first

a Append A new one is created Writing starts at the end of file

x Write Exclusive A new one is created Error

In addition, it can be specified if the file data would be text or in binary form. In the text form, a number
100 will be written as three bytes (1, 0, 0) whereas in binary, the number can be stored as an integer
having four bytes with the appropriate bit pattern (0x00000064). This mode can be combined with any
of the primary modes above. A couple of examples are shown below.

Mode Meaning If the file doesn�t exist? If the file exists?

rb Read-Binary Returns error Normal operation

wt+ Read-Write-Text A new one is created It is truncated to empty file first

 Past Connect : We can store our academic record in a file.

92

Example: Retrieve academic record from a file and compute CGPA.

Recall our academics module in which we kept track of our courses, total points, and earned credits.
Our program had hardcoded this academic record. Ideally, this data (academic record) should be kept
separate from the functionality (our Python program). We can store this data into a file (academics.txt),
with semesters separated by an empty line.

CS1100 9 10
CS1200 12 9
AM1100 9 9
 # empty line to indicate end of semester
CS2200 12 10
CS2310 6 10
CS2710 6 9
 # this empty line is required

Interestingly, our academics.py module can remain the same. We can simply modify academicsuser.py
to read this data file, populate lists in the academics module, and invoke the CGPA calculation. Thus, a
sample run would be as follows.

$ python3 academicsuser.py academics.txt
course credits earned
CS1100 9 10
CS1200 12 9
AM1100 9 9
This Sem CGPA: 9.3

course credits earned
CS1100 9 10
CS1200 12 9
AM1100 9 9
CS2200 12 10
CS2310 6 10
CS2710 6 9
This Sem CGPA: 9.5

Can you write the academicsuser.py program? We present and discuss it below.

1. import sys
2. from academics import *

93

3.
4. acadfile = open(sys.argv[1])
5.
6. for line in acadfile:
7. if line == '\n': # end of semester
8. cprint()
9. print("This Sem CGPA:", cgpa(), "\n")
10. else:
11. cc, cr, ea = line.split()
12. add(cc, int(cr), int(ea))
13.
14. acadfile.close()

We first import sys for argv, and then all the functions from our module academics (Lines 1 and 2). We
open the file specified on the command-line in Line 4. We process each line in the file in the loop at
Line 6. If the line is empty, it indicates the end of a semester. So, we print the academic record and
CGPA (if block). Otherwise, we split the line into course number, credits, and earned points and add
those to our internal record (else block), to be used for CGPA calculation later. We finally close the file
in Line 14.

Example: Track friends information.

We would like to use files to keep track of friends. A friend is associated with a name and the associated
information. We will keep track of the phone number and the github handle. The friends module can
provide API to support the following:

Function Remarks

add(name, phone, github) Add a new friend

remove(name, phone, github) Remove a friend

updatePhone(name, phone) Update phone number of a friend

updateGithub(name, github) Update github handle of a friend

printByName(name) Print information of a friend

printAll() Print information of all the friends

readAll() Read information of friends from a datafile

94

writeAll() Write information of friends to the datafile

We can then call these API functions as follows.

1. add("Somesh", "9934242312", "ssomesh")
2. add("Shouvick", "+91-8342998727", "shouvickmondal")
3. add("Jyothi Krishna", "22574374", "jk")
4. printAll()
5. writeAll()
6.
7. readAll()
8. remove("Somesh")
9. writeAll()
10.
11. readAll()
12. printAll()

We expect the output of this program to be:

Somesh 9934242312 ssomesh
Shouvick +91-8342998727 shouvickmondal
Jyothi Krishna 22574374 jk

Shouvick +91-8342998727 shouvickmondal
Jyothi Krishna 22574374 jk

where the first three lines are printed due to printAll() of Line 4, while the last two lines due to the same
function in Line 12. If we print the contents of the datafile at the end of this processing, those should
look as below:

Shouvick +91-8342998727 shouvickmondal
Jyothi Krishna 22574374 jk

Can you now implement these API?

Let�s first decide how to store the information. As noted by the API, a friend�s name is used as a key.
Hence, we can store the information using two dictionaries: phones and githubs. The updates to the
friends� information happens in these dictionaries. When the user is done with the updates, all the current

95

data can be dumped into a datafile using writeAll(). Before a readAll(), we need to ensure that the
dictionaries are empty.

Thus, our friends� module can be written as follows.

1. phones = {} # name is the key
2. githubs = {} # name is the key
3. datafile = "friends.txt"
4.
5. def add(name, phone, github):
6. phones[name] = phone
7. githubs[name] = github
8.
9. def remove(name):
10. del(phones[name])
11. del(githubs[name])
12.
13. def updatePhone(name, phone):
14. phones[name] = phone
15.
16. def updateGithub(name, github):
17. githubs[name] = github
18.
19. def get(name):
20. return [name, phones[name], githubs[name]] # list
21.
22. def printOne(name, phone, github):
23. print(name, phone, github)
24.
25. def printOneList(npg):
26. printOne(*npg)
27.
28. def printByName(name):
29. printOneList(get(name))
30.
31. def printAll():
32. for name in phones:
33. printByName(name)
34.
35. def writeAll():
36. global datafile
37.

96

38. df = open(datafile, 'w')
39. for name in phones:
40. print(name, phones[name], githubs[name], file=df, sep='\t')
41. df.close()
42.
43. def readAll():
44. phones = {}
45. githubs = {}
46.
47. global datafile
48. df = open(datafile)
49. line = df.readline()
50.
51. while not line == '':
52. name, phone, github = line.strip().split('\t')
53. add(name, phone, github)
54. line = df.readline()
55.
56. df.close()

Most of the functions are small and straightforward, accessing the two dictionaries. Let�s focus on
writeAll() and readAll() functions, which deal with file handling. We use a datafile globally defined
(Line 36). This file is opened for writing (Line 37). For each friend�s information, we print it in a tab-
separated manner into this file in Line 40 (we avoid space-separated values since the name may contain
spaces). The function readAll() begins with emptying phones and githubs dictionaries (Lines 44 and
45). The loop at Line 51 goes through all the lines in the datafile. We use strip() to remove newline, and
split on tab, to separate the three entities (Line 52), which are then added to the dictionaries (Line 53).

4.2 Text Processing
Python is well-suited for processing text data, among other aspects. First, string is a basic type
supported. Second, there are several functions provided for filtering and manipulating strings. We will
explore many of these functions via developing an application�s backend.

Example: Process conference registration data.

Consider that you have developed a web-form (say, using Google Forms) which collects information of
registrants and stores it in a spreadsheet. The basic information supplied is name, email, phone,
affiliation, and designation, and the form also captures the time of registration.

97

There are libraries which support processing of spreadsheets. In our application, we can convert it into
a text-based .csv (comma-separated values) file, so that it can be processed as a tabular data.

Timestamp, Email Address, Name, Contact number, Affiliation / Institute, Designation

4/19/2022 9:28:53, velummech@gmail.com, K. Velumathi, 8973745575,PSG College of Technology, coimbatore,
Faculty

4/23/2022 11:19:06, 169321003@smail.iitpkd.ac.in, Addulachari Nikhila, 7832464327, Indian Institute of
technology Palakkad, Student

4/23/2022 13:40:02,2019bec007@sggs.ac.in,Shankar Lohakare ,5944560276,SGGSIET Nanded ,Student

4/23/2022 13:44:29, 21phzof009@avinuty.ac.in, Nithya Rangarajan, 8928362452, Avinashilingam Institute for
Home Science and Higher education for Women , Student

4/23/2022 14:15:20,sophiakumari13@gmail.com,Sophia Kumari,8647125622, IIT (ISM) DHANBAD ,Student

4/23/2022 14:49:44, 20f1236854@student.onlinedegree.iitm.ac.in, Sahilramani Rajpat, 8983396724, IIT
MADRAS ,Student

4/23/2022 16:00:17, 21f6701022@student.onlinedegree.iitm.ac.in, PRIYA SHARMISHTHA, 7753763928,
Indian institute of technology madras ,Student

98

4/23/2022 16:08:31, 21f6701022@student.onlinedegree.iitm.ac.in, PRIYA SHARMISHTHA, 7753763928,
Indian institute of technology madras ,Student

4/23/2022 16:13:12,4nm20cv044@nmamit.in,Prema S,9783297231,NMAMIT,Student

4/23/2022 16:50:56, 21f1006725@student.onlinedegree.iitm.ac.in, Nigam Vaishnav, 447439860637,
IITM,Student

4/23/2022 17:06:19,abhajoshi@iitg.ac.in, Abha Joshi, 9307876327, Indian Institute of Technology Guwahati,
Faculty

4/23/2022 17:08:28,abhajoshi@iitg.ac.in, Abha Joshi, 9307876327, Indian Institute of Technology Guwahati,
Student

Challenge 1: Comma is present in the data.

While other fields are okay, the affiliation field may contain a comma. Even while typing a name,
someone may inadvertently enter a comma instead of a dot (e.g. P. V, Sindhu). Someone may enter two
phone numbers separated by a comma. All of these are real-world problems. One way to ensure valid
data is by having validation checks at the form-level itself, which can handle these problems, ensuring
that when the data reaches your Python script, it is sanitized. Another way is to not assume that the data
is sanitized, but write our script to handle these situations.

Solution: We can solve this comma problem by saving the spreadsheet in .csv format with tab (\t) as the
separator. Typically (but not always), a tab is not present in the form-input data. Another option is to
encode the data using the base64 module, which allows arbitrary binary data also to be processed. In
our program, we will use tab-separated values.

Challenge 2: Some fields may contain a newline.

By default, our script may assume that one registration record appears in one line of the .csv file.
However, a few fields such as address may contain a newline, which may result in the malfunctioning
of our script. Often entering a newline is not directly feasible in usual text-boxes on forms, but when
the data is copy-pasted from elsewhere, newlines may appear. Textarea boxes in HTML can also have
newline characters.

1. 4/19/2022 9:28:53, velummech@gmail.com, K. Velumathi, 8973745575, �PSG College of Technology
2. coimbatore�, Faculty
3. 4/23/2022 11:19:06, 169321003@smail.iitpkd.ac.in, Addulachari Nikhila, 7832464327, �Indian Institute

of technology
4. Palakkad� Student

Solution: Similar to handling commas, the validation logic (typically, in JavaScript for HTML forms)
can either disallow newlines, or convert those to a different form (such as
 in HTML). Alternatively,
while converting from spreadsheet to CSV format, double-quotes can be used as the text-delimiter,
which stores multiline field in double-quotes (if double-quotes are present in the field, those can be
encoded, or escaped as \� or ��). In our program, we will assume that this is taken care of in a
preprocessing step, and each line is a new record.

99

Challenge 3: Header can be mistakenly recognized as a record.

Our .csv file contains the first line as the header. While processing, if we forget, our functions may treat
it as a valid record, which can change the output. For instance, if we are booking rooms for all the
attendees, we may end up booking (and paying for) one more room than required.

Solution: This is easy to resolve. We can simply remove it as a sanitization prepass. Alternatively, our
Python script can skip the first line.

With these challenges and possible solutions, let�s now find out some interesting statistics from the
registration data. How do we represent the data? We can store each column as a list. Thus, for our
example data, we can have six associative lists for timestamps, emails, names, phones, affiliations, and
designations. These are populated by reading the .csv file.

Functionality 1: Find the number of non-students registered.

This is a simple check on designation (populated from a drop-down menu in the registration form).

1. def nonStudents():
2. for ii in range(len(designations)):
3. if not designations[ii] == 'Student':
4. printRecord(ii)

We make use of the auxiliary function printRecord() to print details of a registrant. The final output of
using the above function is:

K. Velumathi:::PSG College of Technology,
coimbatore:::Faculty:::velummech@gmail.com:::8973745575
Abha Joshi:::Indian Institute of Technology
Guwahati:::Faculty:::abhajoshi@iitg.ac.in:::9307876327

Functionality 2: Find all the people registered from IITs.

This is again a straightforward check on the affiliation, with the caveat that some people may use IIT or
iit or Indian Institute of Technology or INDIAN INSTITUTE OF TECHNOLOGY.

5. def iit():
6. for ii in range(len(affiliations)):

100

7. lowaffil = affiliations[ii].lower() # to lower-case
8.
9. if ("iit" in lowaffil and not "iiit" in lowaffil) or \
10. "indian institute of technology" in lowaffil:
11. printRecord(ii)

Line 7 uses a string function lower() to convert the affiliation to lower-case. This allows us to avoid any
capitalization issues while comparing strings. We check if it is �iit� or its full-form in the condition on
Lines 9 and 10. Since we know that there would be registrants from IIIT also, we filter those out from
the output. The final output of using the above function is:

Addulachari Nikhila:::Indian Institute of technology
Palakkad:::Student:::169321003@smail.iitpkd.ac.in:::7832464327
Sophia Kumari:::IIT (ISM) DHANBAD :::Student:::sophiakumari13@gmail.com:::8647125622
PRIYA SHARMISHTHA:::Indian institute of technology madras
:::Student:::21f6701022@student.onlinedegree.iitm.ac.in:::7753763928
Priya Sharmishtha:::Indian institute of technology madras
:::Student:::21f6701022@student.onlinedegree.iitm.ac.in:::7753763928
Nigam Vaishnav:::IITM:::Student:::21f1006725@student.onlinedegree.iitm.ac.in:::447439860637
Abha Joshi:::Indian Institute of Technology
Guwahati:::Faculty:::abhajoshi@iitg.ac.in:::9307876327
Abha Joshi:::Indian Institute of Technology
Guwahati:::Student:::abhajoshi@iitg.ac.in:::9307876327

Functionality 3: Find all the duplicate records.

Finding duplicates can be done by checking all pairs of records. We can also reduce the number of
checks between a pair to decide them to be duplicates. For instance, in our code, we will say two records
match if the names and the email ids match (even if the remaining information is different). You can
have more stringent checks by adding more conditions.

12. def match(ii, jj):
13. return (names[ii].upper() == names[jj].upper() and \
14. emails[ii].upper() == emails[jj].upper())
15.
16. def duplicates():
17. for ii in range(len(timestamps)):
18. for jj in range(ii + 1, len(timestamps)):
19. if match(ii, jj):
20. print("Records", ii, "and", jj, "are duplicates")
21. printRecord(ii)
22. printRecord(jj)

101

Enumerating all pairs can be done using a nested loop (Lines 17 and 18). If the two records match (Line
19), then we print them. The match() function uses the string function upper() to remove any differences
in the capitalization. Output of using the above function is:

Records 6 and 8 are duplicates
PRIYA SHARMISHTHA:::Indian institute of technology madras
:::Student:::21f6701022@student.onlinedegree.iitm.ac.in:::7753763928
Priya Sharmishtha:::Indian institute of technology madras
:::Student:::21f6701022@student.onlinedegree.iitm.ac.in:::7753763928

Records 10 and 11 are duplicates
Abha Joshi:::Indian Institute of Technology
Guwahati:::Faculty:::abhajoshi@iitg.ac.in:::9307876327
Abha Joshi:::Indian Institute of Technology
Guwahati:::Student:::abhajoshi@iitg.ac.in:::9307876327

Functionality 4: Display a list of participants grouped by their affiliations.

Such a grouping can be done in a manner similar to Functionality 3�s nested loops. But we can as well
sort the lists based on affiliations to have the registrants with the same affiliation in consecutive records.
Unfortunately, this poses another challenge. We have multiple associative lists. So if we want to sort
the affiliations list, we should accordingly also sort other lists. Python provides a zip() function to
achieve this.

23. def groupByAffiliation():
24. grouped = zip(affiliations, names, emails)
25. sg = sorted(grouped)
26.
27. for record in sg:
28. print(record[0], record[1], record[2], sep=":::")

Line 24 creates a joint aggregate from individual aggregates. This joint aggregate is sorted in Line 25,
which sorts all the associative lists. Note that we have provided affiliations as the first list in zip(). Once
these lists are sorted based on affiliation, we go over this sorted aggregate row-by-row, that is, one index
across all three aggregates (Line 27). Each entry in this row corresponds to one record. Thus, record[0]
corresponds to the first affiliation in the sorted order, record[1] is the name corresponding to it, and
record[2] is the email id of that registrant. We print this record in Line 28. The output using the above
function is:

102

Avinashilingam Institute for Home Science and Higher education for Women :::Nithya
Rangarajan:::21phzof009@avinuty.ac.in
IIIT Kancheepuram :::Sahilramani Rajpat:::sahil@student.iiitdm.ac.in
IIT (ISM) DHANBAD :::Sophia Kumari:::sophiakumari13@gmail.com
IITM:::Nigam Vaishnav:::21f1006725@student.onlinedegree.iitm.ac.in
Indian Institute of Technology Guwahati:::Abha Joshi:::abhajoshi@iitg.ac.in
Indian Institute of Technology Guwahati:::Abha Joshi:::abhajoshi@iitg.ac.in
Indian Institute of technology Palakkad:::Addulachari Nikhila:::169321003@smail.iitpkd.ac.in
Indian institute of technology madras :::PRIYA
SHARMISHTHA:::21f6701022@student.onlinedegree.iitm.ac.in
Indian institute of technology madras :::Priya
Sharmishtha:::21f6701022@student.onlinedegree.iitm.ac.in
NMAMIT:::Prema S:::4nm20cv044@nmamit.in
PSG College of Technology, coimbatore:::K. Velumathi:::velummech@gmail.com
SGGSIET Nanded :::Shankar Lohakare :::2019bec007@sggs.ac.in

The whole code, being large, is made available on the book�s code page1. We discussed the most
important parts of it here.

Useful string methods
Following is a glimpse of various useful string methods supported.

Assume that s = "beauty brought butter, butter was bitter, so she brought more butter to make bitter
butter better."

Function Meaning Usage Output

string * number Repeat a string for i in range(5):
 print('*' * i)

*
**

count(substr) Number of occurrences
of a substring

s.count('ter') 7

find(substr) First index of substring s.find(�ter�)
s.find(�terse�)

18
-1

[start:end] Substring or slicing s[18:22]
s[:5]

ter,
beaut

1http://www.cse.iitm.ac.in/~rupesh/books/python/code/unit4/

103

s[-5:-2]
s[5::-1]

tte
ytuaeb

startswith(substr)
endswith(substr)

If a string starts or ends
with a substring

s.startswith('bea')
s.endswith('ter')

True
False

replace(oldsubstr,
newsubstr)

Replace all
occurrences of a
substring by another

s.replace("butter", "butter
and batter")

find it out

title()

upper()
lower()
swapcase()

istitle()

isupper()
islower()

First letter of each
word capital and all
others lowercase
All uppercase
All lowercase
Alter case

First letter of each
word capital and all
others lowercase?
All uppercase?
All lowercase?

�I aM iN.�.title()

�I am in.�.upper()
�I am In.�.lower()
�I am In.�.swapcase()

�I Am IN�.istitle()

�I AM IN�.isupper()
�i am in�.islower()

I Am In.

I AM IN.
i am in.
i AM iN.

False

True
True

isalpha()

isalnum()

isdigit()

isspace()

All characters are [a-
zA-Z]?
All characters are [a-
zA-Z0-9]?
All characters are [0-
9]?
All characters are
whitespaces.

�IaMIn�.isalpha()
�I AM IN�.isalpha()
�rupesh0508�.isalnum()
�0.5�.isalnum()
�9940288482�.isdigit()
�99402 88482�.isdigit()
� \t \n�.isspace()
� \t \n\\�.isspace()

True
False
True
False
True
False
True
False

join() Separate each element
of a list by a substring.
In this case, each
element is a character.

�#�.join(�I am in.�)
".".join(["iitm", "ac", "in"])

I# #a#m# #i#n#.
iitm.ac.in

zfill(width) Lead string by zeros to
fill-up width.

"483".zfill(10)
"-483".zfill(10)
"Hello".zfill(10)

0000000483
-000000483
00000Hello

104

4.3 Pattern Matching and Regular Expressions
Sometimes, an exact match cannot be specified to cover all the cases. Consider, for instance, finding a
mobile number from a text. One may find it easy to go over the text and identify ten consecutive digits.
This is alright, but sometimes the mobile number is written in different forms, such as 99406 67821
(with a space or a hyphen), while at times as (994) 066-7821 (e.g., in the US). One can write a program
to identify all such patterns. Regular expressions allow us to specify those patterns succinctly.

Python provides a module re for regular expressions. We will start with a function findall() to identify
all occurrences of a given pattern in a text.

Example: Find all the mobile numbers out of a long text.

We will first show the program and then explain.

1. import re
2.
3. text = """
4. Hello, I am Dr. Mobile123. Please call me in case of an emergency. My phone number is

99405 33241. Otherwise, you can call my assistant at 8932732436. I am available at my
clinic from 9 to 1. For appointments, call the reception at (687) 324-3232.

5. """
6.
7. digits10 = r'\d{10}' # 10 consecutive digits
8. digits55 = r'\d{5}\D\d{5}' # 5 digits gap 5 digits
9. digitsus = r'\(\d{3}\)\s?\d{3}\D\d{4}' # (3 digits) 3 digits - 4 digits
10.
11. regex = digits10 + '|' + digits55 + '|' + digitsus # first or second or third pattern
12. mobiles = re.findall(regex, text)
13. print(mobiles)

The output of the above program is:

['99405 33241', '8932732436', '(687) 324-3232']

One can, of course, go over this mobile list to print an individual mobile number identified from the
text.

Let�s understand the code carefully. Line 3 creates a long piece of text (in triple-quotes). It contains
numbers multiple times, but contains mobile numbers only thrice in different formats. The first format
is listed as a raw string in Line 7. \d indicates a digit and \d{10} indicates ten digits. This is a regular
expression (as understood by the re module). It matches 8932732436, but not the other two. The second

105

pattern in Line 8 matches 99405 33241 and does not match the other two. It looks for five digits \d{5},
then a non-digit \D (such as space or hyphen), followed by another set of five digits. The third pattern
on Line 9 for US mobile format consists of an opening parenthesis \(followed by three digits \d{3}
followed by a closing parenthesis, followed by an optional space \s?, followed by three digits \d{3},
followed by a non-digit \D (such as space or hyphen), followed finally by four digits \d{4}. \s indicates
a whitespace character, ? makes the preceding expression optional, and parenthesis need to be escaped
because those have a special meaning in re.

These three patterns are OR�ed in the regular expression regex at Line 11 using | operator (understood
by the re module). Line 12 then calls the findall() method which finds all occurrences of the regular
expression in text. These are returned as a list.

Is it possible to have a single regular expression for 99405 33241 and 8932732436? Yes, we can modify
digits55 as '\d{5}\D?\d{5}' and it will match both the phone numbers.

 Good Programming Practice : It is easy to make the regular expressions complex. Therefore, split
those into multiple parts, test each of them separately, and then join them, as we have done in the above
example.

Example: Find all email addresses out of a long text.

Before reading further, think about how you want to identify an email address. One possibility is to have
alphanumeric characters, followed by symbol @, followed by another set of alphanumeric characters.
An alphanumeric character (including underscore) can be specified as \w. Thus, our regular expression
should be: (one or more \w)@(one or more \w).

1. import re
2.
3. text = "My departmental email id is rupesh@cse.iitm.ac.in. This is what I use for all the

official purposes. The institute also provides an id rupesh@iitm.ac.in. During PhD, I used
to have a personal email id rupesh0something@gmail.com, which is still in use. When
gmail was not around, id rupesh_something@usa.net was the one I used. I also own a
twitter handle @rupeshsomething, which I hardly use. That's it from my side for now. See
you in class @11."

4.
5. regex = r'\w+@\w+'
6. emails = re.findall(regex, text.lower()) # use lower-case string
7. print(emails)

106

Symbol + in the regular expression on Line 5 indicates one or more occurrences of the preceding
expression. We also encourage you to use lower() or upper() functions (as in Line 6) where applicable,
so the regular expressions need to take care of only one case.

What will be the output of the above program?

['rupesh@cse', 'rupesh@iitm', 'rupesh0something@gmail', 'rupeshsomething@usa']

One good aspect of this output is that the twitter handle and the class timing strings are not included.
But although the output is close to what we want, it is not accurate. This happened because \w does not
include a dot, which is present in the domain-name of the email address. Let�s include that then by
changing Line 5 to:

5. regex = r'\w+@[\w\.]+'

The subexpression prior to @ remains the same. The one after that groups \w and . together using [...]
and adds + to it for one or more. Can you guess the output with this modified regular expression?

If you felt the output was correct, that is not fully true. Here it is, including the full-stop at the end of
email addresses (since we have now included a dot).

['rupesh@cse.iitm.ac.in.', 'rupesh@iitm.ac.in.', 'rupesh0something@gmail.com',
'rupesh_something@usa.net']

How do we handle this? We want dot to be present in the domain-name, but it should not be the last
character of the domain. We can specify that by modifying the regular expression as:

5. regex = r'\w+@[\w\.]+\w'

We simply added another \w at the end, which permits all the characters except the dot in the end. Now
the output is as expected.

['rupesh@cse.iitm.ac.in', 'rupesh@iitm.ac.in', 'rupesh0something@gmail.com',
'rupesh_something@usa.net']

Discussion: While we learned multiple aspects about specifying a regular expression, the regular
expression above is not the most precise one. For instance, an email id rupesh@iitm��..a is matched
by this regular expression, which is not a valid one. We will have to modify it to include at least one \w
between dots.

Following are the various operators supported by the regular expressions.

107

Expres

sion

Matches Example Outcome

hello substring hello mispelt Finds all occurrences of mispelt.

\d one digit \d\d Two digit number such as
minutes

\w letter, number, underscore \w\w\w\w Four letters such as I18N

\s whitespace hello\sworld hello world

a+ one or more occurrences of a ab+ Matches ab, abb, abbb, abbbb,
�

a* zero or more occurrences of a ab*c Matches ac, abc, abbc, abbbc, �

a? zero or one occurrence of a ab?c Matches only ac and abc

. any character except \n a.c Matches abc, aac, acc, a-c, a+c,
a c, �

[abc] either a or b or c (single char) [+b2] Matches + or b or 2

a|b either a or b (as patterns) Hi|Hello Matches Hi or Hello

a{3} matches aaa O{3}H Matches OOOH

a{3, 5} matches aaa, aaaa, aaaaa O{3, 5}H Matches OOOH, OOOOH,
OOOOOH

Below are a few commonly occurring patterns.

Requirement Regular expression

Variable names [a-zA-Z_][a-zA-Z_0-9]*

Pincode \d{6} or [1-9]\d{5}

Aadhar number \d{12} or \d{4}\s\d{4}\s\d{4} or \d{4}\D\d{4}\D\d{4}

PAN [A-Z]{5}\d{4}[A-Z]

108

Social Security Number (US) \d{3}-\d{2}-\d{4}

Real number [0-9]+\.[0-9]+

Website (http://)?X(\.X)+ where X is [a-zA-Z_0-9-]+

IP address \d+(\.\d+){3}

Date in dd/mm/yy format \d\d/\d\d/\d\d

A student roll number such as
CS22B018

[A-Z][A-Z]\d\d[A-Z]\d\d\d

Weight of an item \d+\s*(kg|lb|gm)

Movie names of the Golmaal series Golmaal((\s|-)(2|3|Again))?

Example: Find dates from a text.

You must have come across a feature in gmail which automatically finds the mention of dates in an
email, clicking which allows you to add an event in your calendar on that date. While we will not solve
this larger problem, we will solve a part of it. In particular, we will allow dates of the following forms
to be identified.

September 10, 2023

Sept. 10, 2023

Sep. 10, 2023

Aug 5, 2023

Jan 5

Feb 5 23

Can you write a regular expression to recognize the above patterns?

Here is the text.

text = """
Hello Prashant

How is Bangalore treating you? Do you continue to be in the same company?

I wanted to check if you are around on September 10, 2023? I am coming there for an official visit
on Sep 9 and would like to drop by your house in the evening of sept 10.

If that is not feasible, I may have to come back in October. Are you around on oct 10? or oct. 11?

Do let me know.

109

"""

We want the output of our program to recognize the highlighted dates (and nothing else, such as only
October). We build the regular expression using twelve months� names.

1. months = ('jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec')
2. regex12 = ''
3.
4. for mm in months:
5. regex12 = regex12 + mm + '|' # create regex using 12 months
6.
7. regex12 = �(� + regex12[:-1] + ')' # remove the extra |
8. finalregex = '(' + regex12 + r'[a-z.]*\s+\d\d?)(,?\s?\d{2,4})?'
9.
10. dates = re.findall(finalregex, text.lower())
11.
12. for onedate in dates:
13. print(onedate)

We explain various parts of the regular expression on Line 8. Variable regex12 contains the three-letter
abbreviations of the twelve months separated by |. [a-z.]* allows the month to contain either only the
abbreviation, or the full name, or anything in between, including a dot. This needs to be followed by at
least one space. \d\d? matches one or two digits of the day. This is optionally followed by the second
part of the pattern which may contain comma and space, followed by the year in two, three, or four
digits. If you wish to support only two or four digit year, it can be achieved as \d{2}|\d{4}.

The output of the whole program is:

('september 10', 'sep', ', 2023')
('sep 9', 'sep', '')
('sept 10', 'sep', '')
('oct 10', 'oct', '')
('oct. 11', 'oct', '')

Each tuple in the output contains three entries corresponding to the three parenthesized expressions in
our regular expression: month followed by day, month in regex12, and optional part of the year.

Discussion: The function findall() finds all the occurrences of the given regular expression. If you are
interested only in one, you can use the search() function. For instance:

110

1. match = re.search(r'Golmaal((\s|-)(2|3|Again))?', 'I watched Golmaal Again again.')
2. if match: print(match)

4.4 Application: Querying Publication Data
We put all our learning together to create a real-world application. We are given publication data from
Scopus, and we would like to query it to identify various records of interest. Snapshot of the data is
given below. Its first line shows various columns such as Authors, Author(s) ID, Title, Year, etc.

By now, we know how to convert this data into a .csv file and read the records in various lists.
Note that all the authors are part of the same column. Since author names can be ambiguous
or written differently in different documents (e.g., R. Nasre or Rupesh Nasre), Scopus
maintains a unique ID per author, which is given in the second column. We would like to query
this information. All the code along with sample data is available on the course webpage2. We
note that there is a difference in the way Windows and Linux store newline characters in files.
Therefore, your program may not directly work across the platforms. To ease out your
processing, the course webpage lists files in both �dos� (for Windows) and �unix� (for Linux)
formats. Also, to handle special characters in Windows, one may need to change the encoding
to UTF-8 as follows.

 df = open(datafile, encoding=�utf8�)

Functionality 1: Print all the documents of an author, with the author�s name.

For instance, for query string �Nasre Rupesh�, the output would be:

"Pattipati, D.K., Nasre, R., Puligundla,
S.K.":::56593174200;35275730500;57204369664;":::BOLD: an ontology-based log

2 http://www.cse.iitm.ac.in/~rupesh/books/python/code/unit4/

111

debugger for C programs",2022
"Singh, S., Shah, T., Nasre, R.":::57202881568;57468012500;35275730500;":::ParTBC:
Faster Estimation of Top-k Betweenness Centrality Vertices on GPU",2022
"Muniasamy, R.P., Nasre, R., Narayanaswamy,
N.S.":::57355590000;35275730500;8935093600;":::Accelerating Computation of Steiner
Trees on GPUs",2022

We list only a few columns, separated by :::. Note that the record does not mention the author
name as �Nasre Rupesh�, but as �Nasre, R.� as a substring. We achieve this by generating
name variants using the following functions. Thus, for �Nasre Rupesh�, the variants are �Nasre
Rupesh�, �Nasre\W*R\W*� and �N\W*Rupesh\W*�.

1. def getNameVariant(words, nn):
2. ii = 0
3. namevv = '';
4.
5. for ww in words:
6. if ii == nn:
7. namevv = namevv + ww + 'W*'
8. elif not ww == '':
9. namevv = namevv + ww[0] + 'W*'
10.
11. ii = ii + 1
12.
13. return namevv.strip()
14.
15. def getNameVariants(author):
16. variants = [author]
17. words = author.split(' ')
18.
19. for ii in range(len(words)):
20. # ii'th word needs to be left as it is, others need to be shortened.
21. vv = getNameVariant(words, ii)
22. variants.append(vv)
23.
24. return variants

The outer function getNameVariants() splits an author name into words, and calls
getNameVariant() function to shorten all but one word.

112

Functionality 2: Print all the documents of an author, with the author�s ID.

Implementing this functionality is relatively easy, since author IDs can be checked for an exact
match. Its output is the same as Functionality 1 for �35275730500�, but can be different (fewer
records) due to exact match. For instance, for input �Vignesh� Functionality 1 outputs several
records corresponding to multiple Vigneshs, while with input �57195129630�, there is a single
record.

1. def allOfAuthorById(aid):
2. for ii in range(len(authornames)):
3. if aid in authorids[ii]:
4. printRecord(ii)

The function goes over all the records and wherever it finds the given author-id, that record is
printed.

Functionality 3: Print all the documents of a first author.

For instance, for input �Muniasamy Rajesh�, the output is:

"Muniasamy, R.P., Nasre, R., Narayanaswamy,
N.S.":::57355590000;35275730500;8935093600;":::Accelerating Computation of Steiner
Trees on GPUs",2022

This functionality needs peeping into author-names and querying only the first one. One
possibility is to extract all the author names into a list and then checking only the first elements.
This would be useful in the next functionality also. We will do it in a slightly different way using
regular expressions. We observe that the first author is characterized by a double-quote. We
exploit this to check the first author.

1. match = re.search(r'"[^,�]*' + author.upper(), authornames[ii].upper())
2. if match: printRecord(ii)

The regular expression in Line 1 looks for a double-quote character followed by non-comma
non-double-quote characters (signifying the first author).

Functionality 4: Print all the documents of a non-first author.

113

This is a flip of the previous functionality, and we implement it using Functionality 1 and 3 �
that, find a document with an author, and then check whether it is the first author. If not, we
output it.

For instance, for input �Nasre Rupesh�, the output is:

"Pattipati, D.K., Nasre, R., Puligundla,
S.K.":::56593174200;35275730500;57204369664;":::BOLD: an ontology-based log
debugger for C programs",2022
"Singh, S., Shah, T., Nasre, R.":::57202881568;57468012500;35275730500;":::ParTBC:
Faster Estimation of Top-k Betweenness Centrality Vertices on GPU",2022
"Muniasamy, R.P., Nasre, R., Narayanaswamy,
N.S.":::57355590000;35275730500;8935093600;":::Accelerating Computation of Steiner
Trees on GPUs",2022

The code corresponding to this functionality uses two calls to re.search(), once for finding if an
author is present (as any author) and another time as the first author.

1. match = re.search(author.upper(), authornames[ii].upper())
2. if match:
3. match = re.search(r'"[^,]*' + author.upper(), authornames[ii].upper())
4. if not match: printRecord(ii)

Functionality 5: Find most prominent current and potential collaborators of an author.

This functionality is very different from the earlier ones. It involves identifying the most
prominent current and potential collaborators of an author. For instance, we can identify with
whom a given author has more publications (current collaborators). Further, to find potential
collaborators, we can identify a common set of second-level collaborators from the direct
collaborators. This is similar to how certain social networks suggest �People you may know� �
if your contacts have common contacts, it is likely that you would know them. Thus, if my
collaborators collaborate with certain common people, those are likely to be my future
collaborators.

For instance, for input �Nagarajan�, the output is:

{'Bhattacharya, S.': 129, 'Sharma, A.': 126, 'Wang, J.': 123, 'Kim, J.': 109, 'Wang, Z.': 90,
'Kumar, A.': 90, 'Ghosh, S.': 89, 'Zhang, Y.': 87, 'Lee, K.': 87, 'Jain, S.': 87}

114

Here we list the top 10 current and potential collaborators, along with their score (as a
dictionary).

1. def getAllCollaborators(ii):
2. collab = []
3. names = authornames[ii].split(',')
4. newnn = ''
5. ii = 0
6.
7. for nn in names:
8. oldnn = newnn
9. newnn = nn
10.
11. if newnn[0] == '"': newnn = newnn[1:]
12. if newnn[-1] == '"': newnn = newnn[:-1]
13. newnn = newnn.strip()
14.
15. if ii % 2 == 1:
16. collab.append(oldnn + ', ' + newnn)
17. ii = ii + 1
18.
19. return collab
20.
21. def getCollab(author):
22. directCollab = []
23.
24. for ii in range(len(authornames)):
25. if author.upper() in authornames[ii].upper():
26. directCollab = directCollab + getAllCollaborators(ii)
27. return directCollab
28.
29. def pcByCoauthors(author):
30. directCollab = getCollab(author)
31. collabCount = {}
32.
33. for dc in directCollab:
34. indirectCollab = getCollab(dc)
35.
36. for indc in indirectCollab:
37. if indc in collabCount: collabCount[indc] = collabCount[indc] + 1
38. else: collabCount[indc] = 1
39.
40. collabCount = dict(sorted(collabCount.items(), key = lambda kv: (kv[1], kv[0]),

115

reverse=True))
41. collabCount = dict(itertools.islice(collabCount.items(), 10))
42.
43. print(collabCount)

The outer function pcByCoauthors() first collects direct collaborators using the function
getCollab() in Line 34. For each of these direct collaborators, we find their collaborators in the
loop at Line 36 (which are indirect collaborators of the original author). For each such indirect
collaborator, we find the number of times it occurs via direct collaborators. This is naturally
maintained in a dictionary (Lines 37 and 38). In the end, we soft this dictionary on these counts,
from higher to lower values (Line 40). Out of these, we list the top 10 by slicing through the
dictionary (Line 41), and print those (Line 43).

UNIT SUMMARY

We learned to read and write to files, and to process those depending upon the application. We then
digged deeper into various string related functions provided by the language. Finally, we explored the
powerful world of regular expressions, allowing us to go beyond a simple find(). In each of these, we
solved several problems.

EXERCISES

Multiple Choice Questions

1. Consider a text file data.txt whose contents are:

Dean is Down with Dengue.

What are the contents of data.txt after executing the following program?

fp = open("data.txt", "w+")
print("Dayalu Dean", file=fp)
fp.seek(7)
print("in Deen Dayal Nagar.", file=fp)
fp.close()

A. Dean is Down with Dengue.Dayalu in Deen Dayal Nagar.
B. Dayalu in Deen Dayal Nagar.
C. Dayalu Dean

116

in Deen Dayal Nagar.
D. Dean is in Deen Dayal Nagar.

2. Consider a text file pqr.txt whose contents are:

PQ RS

What is the output of the following program?

fp = open("pqr.txt")

for text in fp.readline():
 print(text.lower())

fp.close()

A. pq

rs
B. p

q

r
s

C. pq rs
D. pqrs

3. What is the output of the following program?

text = "ToPsy TuRvy"
w1, w2 = text.split()
print(w1.swapcase(), w2.title().swapcase())

A. tOpSY tUrVY
B. tOpSY Turvy
C. tOPSY tURVEY
D. tOpSY tURVY

117

4. Which of the following regular expressions does NOT match 11/09/2023?

A. \d\d/\d\d/\d{4}
B. \w\w/\w\w/\d{4}
C. \w\d\D\d\w\D\d\w\d\w
D. \d\w\D\d\w\D\d\w\D\d

5. What is the output of the following program which works with HTML tags?

import re

html = "I am NOT going! You can do whatever you want"
match = re.findall('<.*>', html)
print(match[0])

A. NOT
B.
C. NOT going! You can do whatever
D.

Answers of Multiple Choice Questions

1. B: Dayalu in Deen Dayal Nagar.
2. B:

p
q

r
s

3. D: tOpSY tURVY
4. D: \d\w\D\d\w\D\d\w\D\d
5. C: NOT going! You can do whatever

PRACTICAL

1. Extend our academic record maintenance program to work with multiple files
corresponding to multiple students.

2. Extend our friends module to track age. Does the same program with minor
modifications work, or do you need some more changes?

118

3. Modify our regular expression program to disallow email addresses of this type:
rupesh@iitm��..a. Thus, there should not be consecutive dots in the domain.

4. Create the regular expression for a URL.

5. Combine our file handling and regular expressions to implement a functionality similar
to the grep utility, which finds lines having a pattern in a text file.

Dynamic QR Code for Further Reading

119

d

UNIT SPECIFICS

Through this unit we discuss the following aspects:

● Installing and configuring the Django framework

● Creating a web application using the framework

● Passing parameters to the web application

RATIONALE

Several ready-to-use frameworks have been developed using Python and are quite popular, such

as Django, Web2Py, Ruby on Rails, etc. In this unit, we would like to explore a popular framework

Django which allows us to build and run web applications. This would convey to you the power of

using Python frameworks and how easy it is to develop your applications with them.

PRE-REQUISITES

Units 1, 2, 3 and 4

5

5

Django Framework

120

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U5-O1: Install and configure Django framework

U5-O2: Create a project and an app in Django

U5-O3: Use the web application via a browser

Unit-

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6

U5‐O1 3 3 3 - 3 1

U5‐O2 1 1 2 2 1 -

U5‐O3 2 1 3 1 2 1

Building a web application has become quite easy with frameworks such as Django. Barring
a few simple updates to files and executing a few commands, one can completely focus on
creating the web content. In this unit, we will learn how to install and configure the Django
framework, and then create our web applications.

5.1 Installing and Running Django

If Django is not already installed, it can be readily installed with the usual commands. For instance, on
Linux, the following command can be used.

sudo apt install python3-django

On Windows, it is a two step process. In the first, we create a virtual environment, and then we can
install Django via pip installer, as follows. All these commands can be executed either in cmd command
prompt in Windows or in its PowerShell.

 python -m venv myvenv

 myvenv\Scripts\activate

python -m pip install Django

The first command creates a virtual environment in the directory myvenv. The second command
activates it. The third command uses pip to install the Django framework.

121

To check if Django is already installed or whether it got installed correctly, try running the following
command from your home directory (a directory you have write access to).

django-admin startproject mydjango

Here, mydjango is a project name of your choice. If the command runs successfully, it would not show
any output, but will create the following directory structure.

$ ls -R mydjango/
mydjango/:
db.sqlite3 manage.py mydjango

mydjango/mydjango:
asgi.py __init__.py __pycache__ settings.py urls.py wsgi.py

mydjango/mydjango/__pycache__:
__init__.cpython-38.pyc settings.cpython-38.pyc urls.cpython-38.pyc wsgi.cpython-38.pyc

For now, ignore the use of various files and subdirectories. We will get back to them as we create our
first web application. But these files should indicate that Django is installed properly. We can now start
the server.

$ cd mydjango
$ python3 manage.py runserver
Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work properly until you apply the
migrations for app(s): admin, auth, contenttypes, sessions.
Run 'python manage.py migrate' to apply them.
September 18, 2022 - 07:04:38
Django version 4.1.1, using settings 'mydjango.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
_

This starts the server on the local machine at port 8000. The IP address to be used in the browser is
highlighted above. We can think about the web-user as a client and manage.py as the server. To

122

communicate, they both need to speak the same language, which is HTTP. Of course, the user does not
need to understand what HTTP commands are � that gets done by our browser.

If the installation is unsuccessful or the server is not running, the browser will issue the usual message:
Unable to connect. Note that since the browser and the web server are running on the same machine
(your laptop or desktop), an internet connection is not required to check this. 127.0.0.1 is a special IP
address which refers to the local machine. If all is well, the browser would show a rocket and the server
running on the command-line will issue a message similar to the following:

[18/Sep/2022 07:06:24] "GET / HTTP/1.1" 200 10681

5.2 Creating and Running a Web Application
We are now ready to create our first web application. Navigate to the mydjango directory (where
manage.py exists) and issue the following command.

123

$ python3 manage.py startapp appone

This is our first web application, named appone. You will see the corresponding directory created in the
current directory, with the following structure.

$ ls -R appone/
appone/:
admin.py apps.py __init__.py migrations models.py tests.py views.py

appone/migrations:
__init__.py

Let�s see if this is sufficient to run our webapp appone. We restart the server.

$ python3 manage.py runserver

and in our web-browser, we enter the same url: http://127.0.0.1:8000/

This works as before (with the rocket sign). This means we have not broken anything (so far). Now we
check appone by entering the url in the browser as: http://127.0.0.1:8000/appone

This shows the browser screen as below.

124

This indicates that the web-server manage.py is unable to find appone. This is because, although the
directory appone exists, it needs to be registered explicitly.

App Registration Step 1

Open mydjango/mydjango/urls.py file. It should originally look as below.

�
from django.contrib import admin
from django.urls import path

urlpatterns = [
 path('admin/', admin.site.urls),
]

Modify it to the following.

�
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path('appone/', include('appone.urls')),

]

At this stage, the server may issue certain errors (e.g., ModuleNotFoundError: No module named
'appone.urls'). Ignore the errors for now. If we try to check again in the browser, we may encounter
Unable to connect message. This means the registration of our web-app is not yet complete.

App Registration Step 2

This time, we need to create the appone directory�s urls.py file (note that the file is not already present).
This file permits accessing the contents of appone�s views.py.

1. from django.urls import path
2. from . import views
3.
4. urlpatterns = [
5. path('', views.index, name='index'),
6.]

125

At this stage, the server may issue other errors (e.g., AttributeError: module 'appone.views' has no
attribute 'index'). This indicates that the registration needs additional steps.

App Registration Step 3

Open the file appone/views.py. It exists and should look like this.

1. from django.shortcuts import render
2.
3. # Create your views here.

Modify it to look like this.

1. from django.shortcuts import render
2. from django.http import HttpResponse
3.
4. def index(request):
5. return HttpResponse("<h1>Hello World!</h1>")

Restart the server (by going to mydjango directory):

$ python3 manage.py runserver

At this stage, the server should not issue any errors. Open the url in the browser and it should print Hello

World!

126

Once this basic setup is running, we can add arbitrary HTML text and can process it from views.py.

Example: Display an HTML file.

Let�s create a simple HTML file in appone directory, named basic.html. Its contents are as follows. We
will assume that you know basic HTML.

basic.html

<h2>This is basic HTML</h2>

It contains a link to Python
Programming's webpage, and an image of Python Logo.<p>
<p>

Do you know that we can also create tables in it?<p>
<table border=1>
 <tr><td>one one</td><td>one two</td></tr>
 <tr><td>two one</td><td>two two</td></tr>
</table>

<p>
That's all for now.

You can open this file in a browser to see how it looks. But we would like our webapp to show this
content. Keeping everything else the same, let�s modify appone/views.py file as follows.

1. from django.shortcuts import render
2. from django.http import HttpResponse
3.
4. def index(request):
5. fp = open('/home/rupesh/mydjango/appone/basic.html')
6. htmlstr = fp.read()
7. fp.close()
8.
9. return HttpResponse(htmlstr)

We use our file handling functions to read basic.html as a string, and return it as the HTTP response
(when the browser issues an HTTP request to our server).

127

Important Note: The file path provided in Line 5 needs to be an absolute path, unless Django settings
allow a relative path.

When viewed in a browser, the contents of basic.html are visible.

Note that from the index() function of views.py, we can use arbitrary Python code to perform application-
specific processing. For instance, changing Line 9 to

 9. return HttpResponse(htmlstr.lower())

changes all the text to lowercase.

Example: Display academic record using a web-app.

Recall our academic record programs. We stored the course number, its credits, and earned credits in a
file, and read this information to populate in our lists. We then also computed CGPA and printed this
information on the screen. In this unit, we will modify the functionality to print this as an HTML table.
Let�s create a new application for this.

Step 0: Create the app from mydjango directory.

$ python3 manage.py startapp acads

Step 1: Adding entry to mydjango/mydjango/urls.py

128

1. from django.contrib import admin
2. from django.urls import path, include
3.
4. urlpatterns = [
5. path('admin/', admin.site.urls),
6. path('appone/', include('appone.urls')),
7. path('acads/', include('acads.urls')),
8.]

Step 2: Creating acads/urls.py (you can copy it from appone/urls.py)

1. from django.urls import path
2. from . import views
3.
4. urlpatterns = [
5. path('', views.index, name='index'),
6.]

Step 3: Writing code in acads/views.py

1. from django.shortcuts import render
2. from django.http import HttpResponse
3. from .academics import *
4.
5. def processAcads(filename):
6. htmlstr = '<table border=1>\n'
7. acadfile = open(filename)
8.
9. for line in acadfile:
10. if line == '\n': # new semester
11. htmlstr = htmlstr + gethtml()
12. htmlstr = htmlstr + "<tr><td colspan=3>This Sem CGPA:" + \
13. str(cgpa()) + "</td></tr>\n"
14. else:
15. cc, cr, ea = line.split()
16. add(cc, int(cr), int(ea))
17.
18. acadfile.close()
19. htmlstr = htmlstr + '</table>
\n'
20. return htmlstr

129

21.
22. def index(request):
23. htmlstr = processAcads("/home/rupesh/mydjango/acads/academics.txt")
24. return HttpResponse(htmlstr)

Note that we have imported the same module academics, but we have added a function gethtml() to get
the HTML version of an academic record.

Step 4: Start the server from mydjango directory.

$ python3 manage.py runserver

Step 5: Access the academic record from the browser. Enter the URL as:

http://127.0.0.1:8000/acads/

The browser should display the academic record as follows:

130

5.3 Parameter Passing with GET
Users can pass parameters to our web-app. For instance, we can write an app for
exponentiation (it is an overkill, but this is an example). One can then invoke the program as:

http://127.0.0.1:8000/expo/?x=2&y=8

The parameters are named, are assigned values using = operator, and are separated by &. In
expo/views.py, we can then extract the values of x and y, compute x**y and print the value in
the HTTP response. Django provides a dictionary GET within its HTTP request to access these
variables.

1. def index(request):
2. x = int(request.GET['x'])
3. y = int(request.GET['y'])
4. return HttpResponse(str(x**y))

The output shown on the browser will be

256

You can experiment with other values. Let�s make use of such parameter passing functionality
to create our Django webpage.

Example: Create a personal webpage.

Our webpage should have the following display elements.

● A common header containing a photo and basic affiliation information.
● A common menu to navigate through Home, Academics, Projects, and Contacts.
● When we click on a particular menu item, appropriate information should be displayed

below the menu.

Sample screenshots of our personal webpage are shown below. The first screen shows the
landing Home page.

131

Note the URL in the address bar. The next page is about Projects.

132

Note how the address-bar shows the parameters passed. We use a parameter named mode
whose value decides which page to show. When mode was undefined or �home�, we displayed
the home page. When its value is �projects�, we display the project information, and so on.

The following page shows the contact information. Once again, notice mode=contact in the
address bar.

133

Creating such a menu system is straightforward in HTML. We show the header and the footer
below, which are common across all the displayed pages.

header.html

<head>
 <title>*My Webpage with DJango*</title>
</head>

<body bgcolor='#44aa44'>
<table align=center width=700 border=1 cellpadding=5 cellspacing=0 bgcolor='#ddffee'
height=100%><tr><td valign=top>

<table align=center><tr><td>

134

 </td><td width=20>

 </td><td>
 <h3>Rupesh Nasre.</h3>
 Computer Science and Engineering

 IIT Madras

 </td></tr></table>

<table align=center width=700><tr><td bgcolor='#66cc66' align=center>

 Home ||
 Academics ||
 Projects ||
 Contact

</td></tr></table>

Notice how we have specified mode values while creating links for Home, Academics,
Projects, and Contact.

footer.html

</td></tr></table>
</body>

Files home.html, acads.html, projects.html, and contact.html are simpler. We show one of
them. These files do not contain any Python code.

home.html

Rupesh is an associate professor in the CSE Department at IIT Madras. He completed BE
from VRCE Nagpur, MTech from IIT Bombay, PhD from IISc Bangalore, and Post-Doctoral
Fellowship from the University of Texas at Austin. His research focus is in Compilers and
Parallelization. He is a recipient of the Young Faculty Recognition Award at IIT Madras,
Cray HPC Award, NVIDIA Special Prize for CodeForScience, and a winner of the Yahoo!
University Hack Day. He holds seven patents, co-authors a book on Distributed Graph
Analytics, and is an associate editor of the CCPE journal. He is the head of the National
Supercomputing Mission's Nodal Centre at IITM for Training in HPC and AI.

Who glues these files together? It is the views.py file from myweb directory, which gets invoked
when we load a particular page from the browser, which also takes care of reading the mode
parameter.

135

myweb/views.py

1. from django.shortcuts import render
2. from django.http import HttpResponse
3.
4. def index(request):
5. if 'mode' in request.GET:
6. mode = request.GET['mode']
7. else:
8. mode = 'home'
9.
10. folder = '/home/rupesh/mydjango/myweb/'
11. header = 'header.html'
12. footer = 'footer.html'
13. filename = folder + mode + '.html'
14.
15. htmlstr = ''
16. fp = open(folder + header) # display header
17. htmlstr = htmlstr + fp.read()
18. fp.close()
19.
20. fp = open(filename) # display mode file
21. htmlstr = htmlstr + fp.read()
22. fp.close()
23.
24. fp = open(folder + footer) # display footer
25. htmlstr = htmlstr + fp.read()
26. fp.close()
27.
28. return HttpResponse(htmlstr)

Lines 5�8 read the mode parameter, if defined. While displaying, the HTML is formed from
three different files: header, mode file, and footer. This is shown in further processing. A
concatenation of all three HTML files is finally sent as the HTTP response (Line 28).

UNIT SUMMARY

We learned to installed and configure Django. We then created our web-applications to output HTML
from our Python programs. Django is a framework which allows us to create these applications easily.

136

Finally, we learned how to pass parameters to our Python web-application, which allows customized
processing.

EXERCISES

Multiple Choice Questions

1. After successful installation of Django, I start the server, but when I try to connect to the server from
my browser using URL http://127.0.0.1/, I am unable to connect. What is the reason?

A. Server is started from a wrong location.
B. IP address is wrong.
C. Port is wrong.
D. Internet is unavailable.

2. Consider the following Django function in views.py, which reads from a file in the same directory.

def index(request):
 fp = open("file.html")
 htmlstr = fp.read()
 fp.close()
 return HttpResponse(htmlstr.lower())

What will be the output of this function (when invoked appropriately from the browser)?

A. No output
B. Error that the file is not found
C. Contents of file.html are displayed in lower-case.
D. Error that the contents of file.html are modified

3. Which of the following steps is not required to create and start a new application named newapp?

A. Executing python3 manage.py startapp newapp

B. Updating mydjango/mydjango/urls.py
C. Updating newapp/views.py
D. Updating newapp/migrate.py

4. What URL will produce output 20 for the following Django program in an application named prod?

def index(request):

137

 val = int(request.GET[�one�]) * int(request.GET[�two�])
 return HttpResponse(str(val))

A. http://127.0.0.1:8000/prod/?x=2&y=10
B. http://127.0.0.1:8000/prod/?one=one&two=twenty
C. http://127.0.0.1:8000/prod/?one=5&two=2
D. http://127.0.0.1:8000/prod/?two=5&one=4

5. What is the output of the following program when invoked with URL
http://127.0.0.1:8000/myweb/?tag=bold&beautiful

def index(request):
 return HttpResponse(request.GET['tag'].upper())

A. BOLD&BEAUTIFUL
B. BOLD
C. BEAUTIFUL
D. Browser Error

Answers of Multiple Choice Questions

1. C: Port is wrong.
2. B: Error that the file is not found (we need to provide absolute file path)
3. D: Updating newapp/migrate.py
4. D: http://127.0.0.1:8000/prod/?two=5&one=4
5. B: BOLD

PRACTICAL

1. Modify our personal webpage such that when a menu item�s page is displayed, the
corresponding menu item is displayed as a plain-text, and not as a hyperlink. For
instance, when we click on Projects, the menu should be displayed as:

Home || Academics || Projects || Contact

2. Extend our academics program to multiple students, with a particular student�s roll
number passed as a GET parameter.

3. Create a webpage to display items of a shop. Allow filters by category or price.

138

4. Extend our conference related Python application (from Unit 4) to display the
information as a web-app.

5. Create a web-application for various numerical problems (sum of numbers, product of
a series, powers of two, solving an equation, etc.). Users can choose a method using
a parameter.

Dynamic QR Code for Further Reading

139

REFERENCES FOR FURTHER LEARNING

The best way to learn Python is by trying out programs yourself.

Following are certain references which I have found useful. There must be other

numerous very good references as well.

1. Guido van Rossum and the Python development team, Python Tutorial, Python

Software Foundation, 2018

2. Brian Heinold, A Practical Introduction to Python Programming, Creative

Commons, 2012

3. w3schools, Python Tutorial, online

https://www.w3schools.com/python/default.asp

4. Codes from Geeks For Geeks

https://www.geeksforgeeks.org/python-programming-examples/

5. Course webpage (codes / errata for this book, and more examples)

http://www.cse.iitm.ac.in/~rupesh/books/python/

140

CO AND PO ATTAINMENT TABLE

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after

the completion of the course and a correlation can be made for the attainment of POs to analyze

the gap. After proper analysis of the gap in the attainment of POs necessary measures can be taken

to overcome the gaps.

Table for CO and PO attainment

Course

Outcomes

Attainment of Programme Outcomes

(1- Weak Correlation; 2- Medium correlation; 3- Strong

Correlation)

PO‐1 PO‐2 PO‐3 PO‐4 PO‐5 PO‐6 PO‐7

CO‐1 3 3 3 2 1 1 2

CO‐2 3 3 3 2 1 1 2

CO‐3 3 3 3 2 1 1 2

CO‐4 3 3 3 2 1 1 2

CO‐5 3 3 3 2 1 1 2

The data filled in the above table can be used for gap analysis.

141

 INDEX

absolute path 127 file opening modes 105

and conjunct 28 file pointer 102

binary search 62 file truncation 105

break 42 for loop 47

buffering 102, 104 format specification 18

camelcase 10 formatted printing 19

comma separated values 112 functions 63

command line arguments 96 garbage collection 12

complex numbers 20 GET dictionary 145

compund data types 24 global variable 67

conditionals 32 Guido van Rossam 11

conjunct 36 Hello World 14

continue 50, 65 history 11

default arguments 71, 98 import 77, 85, 86

142

dictionary 24 index function 140

dynamic typing 12 input function 15

else clause of a loop 52 input output 102

encoding 125 installation 12

end, terminator (print) 15 installing django 135

exit function 49 int function 17

fibonacci numbers 44 interpreter 14

ip address 136 read‐write mode 101

key‐value pairs 25 readline function 103

linear search 75 recursion 73

list 24 registration of web app 139

local variable 68 relative path 97

matrix 81 return statement 65, 66

memory 95 seek function 102

module 76 sep, separator (print) 15

multiple assignment form 46 short‐circuit 38

143

nested loops 50 split 34, 56

not 41 sqrt function 49

or conjunct 36 string indexing 23

package 84 strings 21

paradigms of programming 11 strip function 100

pass 54 subpackage 84

permanent storage 95 tab separated values 112

polymorphism 15 tabular data 111

print function 14, 64, 71 tuple 24

pseudocode 32 variable 15

range function 47 while loop 42

re package 118 zip function 116

read function 104

144

